Abstract:
Method and arrangement for reducing the effects of a sonic boom created by an aerospace vehicle when the vehicle is flown at supersonic speed. The method includes providing the aerospace vehicle with a first spike extending from the nose thereof substantially in the direction of normal flight of the aerospace vehicle, the first spike having a second section aft of a first section that is aft of a leading end portion, the first and second sections having a second transition region there between and each of the sections having different cross-sectional areas, the leading end portion of the first spike tapering toward a predetermined cross-section with a first transition region between the predetermined cross-section and the first section. The first transition region is configured so as to reduce the coalescence of shock waves produced by the first spike during normal supersonic flight of the aerospace vehicle. A spike may also be included that extends from the tail of the aerospace vehicle to reduce the coalescence of shock waves produced by the spike during normal supersonic flight of the aerospace vehicle.
Abstract:
A system is provided that includes a detachable mounting apparatus. The detachable mounting apparatus is configured to be secured on an aircraft. The detachable mounting apparatus includes a detection system and a warning system. The detection system can detect objects in proximity to the aircraft and generate a detection signal when an object is detected in proximity to the aircraft. The warning system can generate at least one alarm signal that is perceptible outside the aircraft.
Abstract:
Aircraft landing gear assemblies and aircraft are provided. A landing gear assembly includes a main post and a light element cluster. The main post has a non-rotating portion and a rotatable steering portion. The light element cluster is associated with the non-rotating portion and includes at least two independently illuminating sections.
Abstract:
An integrated power distribution, data network, and control architecture for a vehicle is provided that includes nodes distributed throughout the vehicle. Each node includes power distribution (PD) and data collection and distribution (DCD) components. The PD components receive electrical power from a source external to the node and distribute and control the electrical power supplied to active and passive electrical loads that are external to the node. The PD components include an electrical power input interface configured to receive an electrical power input from a source external to the node, and one or more power control modules. Each power control module can control the electrical power supplied to one or more electrical power output interfaces that supply power to the active and passive electrical loads. The DCD components receive data from data sources external to the node and transmit data to data consumers external to the node.
Abstract:
Aircraft, aircraft exterior speaker systems, and methods of projecting sound waves from an exterior of an aircraft are provided. An aircraft includes an outer skin membrane, a vibration actuator, and a controller. The outer skin membrane has an exterior surface that defines an exterior boundary of the aircraft. The vibration actuator is coupled for common vibration with the outer skin membrane. The controller is operatively coupled with the vibration actuator and is configured to generate a command for the vibration actuator based on audible content to be projected from the exterior surface. The controller is further configured to transmit the command to the vibration actuator. The vibration actuator is configured to vibrate in response to receiving the command.
Abstract:
A supersonic inlet includes a relaxed isentropic compression surface to improve net propulsive force by shaping the compression surface of the inlet to defocus the resulting shocklets away from the cowl lip. Relaxed isentropic compression shaping of the inlet compression surface functions to reduce the cowl lip surface angle, thereby improving inlet drag characteristics and interference drag characteristics. Supersonic inlets in accordance with the invention also demonstrate reductions in peak sonic boom overpressure while maintaining overall engine performance.
Abstract:
The disclosed embodiments relate to an aircraft having an X-band avian radar detection and warning system. The system can include an X-band radar system and a processor. The processor can include a target processor module that can process the reflected X-band radar signals to: detect targets in a projected flight path of the aircraft; identify one or more targets that are determined to correspond to one or more birds; and generate a bird detection signal. In response to receiving the bird detection signal, the warning generator module can generate and transmit a warning generator signal to at least one cockpit output device in the cockpit of the aircraft to cause it to generate a warning signal that is perceptible in the cabin of the aircraft to warn pilots and crew of a potential collision with the birds so that the pilot can take evasive action.
Abstract:
A system for controlling a pressure field around an aircraft in flight is disclosed herein. In a non-limiting embodiment, the system includes, but is not limited to, a plurality of pressure sensors that are arranged on the aircraft to measure the pressure field. The system further includes, but is not limited to, a controller that is communicatively coupled with the plurality of pressure sensors. The controller is configured to receive information that is indicative of the pressure field from the plurality of pressure sensors. The controller is also configured to determine when the pressure field deviates from a desired pressure field based on the information. The controller is also configured to transmit an instruction to a movable component onboard the aircraft that will cause the movable component to move in a manner that reduces the deviation.