Abstract:
A periodic signal generator includes a resonant LC tank circuit that generates a periodic reference signal at a first frequency at a differential output thereof. A temperature-responsive frequency compensation module is electrically coupled to the differential output of the resonant LC tank circuit. This module includes a temperature dependent voltage control module that generates a temperature dependent control voltage and an array of switchable capacitive modules that is electrically coupled to a first node of the differential output of the resonant LC tank circuit and responsive to the temperature dependent control voltage and a plurality of switching coefficients. The array of switchable capacitive modules includes a fixed capacitor having a first terminal electrically coupled to the first node and a voltage-controlled variable capacitor having a first terminal electrically coupled to the first node.
Abstract:
An integrated circuit device includes a reference voltage generator, which is configured to generate an adaptive reference voltage (Vref) that varies inversely relative to changes in magnitude of a data signal (DATA) received at an input thereof. This reference voltage generator includes a totem pole arrangement of at least two variable impedance elements having control terminals capacitively coupled (by respective capacitors) to the input. A current mirror is electrically coupled to the totem pole arrangement of at least two variable impedance elements. A comparator is also included. The comparator has a first input terminal that receives the adaptive reference voltage and a second input terminal that receives the data signal.
Abstract:
A self-aligned contact, and a method for fabricating the same, are provided. A conductive element having an overlying hydrogen silsesquioxane (HSQ)-based dielectric cap is formed over a semiconductor substrate. Dielectric sidewall spacers are then formed adjacent to sidewalls of the conductive element and the HSQ-based dielectric cap. A HSQ-based dielectric layer is formed over the resulting structure, and an inter-layer dielectric layer, such as TEOS, is formed over the HSQ-based dielectric layer. The inter-layer dielectric layer is then etched through a mask having an opening located over a sidewall spacer, a portion of the HSQ-based dielectric cap and a portion of the substrate. The etch (which may be a C5F8 based etch) has a high selectivity (e.g., about 20:1) with respect to the HSQ-based dielectric layer, thereby enabling the etch to stop on the HSQ-based dielectric layer. Another etch removes the exposed HSQ-based dielectric layer to expose the substrate.
Abstract:
An integrated circuit chip is provided having a port for receiving a character string. A hardware hashing circuit on the integrated circuit chip is configured to perform a hashing function on the character string, thereby creating a hashed output value. A binary content addressable memory (CAM) array on the integrated circuit chip is coupled to receive the hashed output value. The binary CAM array provides an index value in response to the hashed output value if the hashed output value matches an entry of the binary CAM array. In a particular embodiment, the hardware hashing circuit can be configured to process character strings having different lengths (greater than the width of the binary CAM array) in response to one or more configuration bits. The hardware hashing circuit can include, an input register, Data Encryption Standard (DES) circuitry and exclusive OR circuitry.
Abstract:
An integral system for testing integrated circuits (ICs) mounted on an assembly strip after lead formation and before separation from the assembly strip. The ICs are arranged in rows and columns on each assembly strip such that the sides of each IC are connected to leads extending from the assembly strip, and the ends of each IC are held by the assembly strip. The strips are loaded into the system and passed to a first station at which leads are cut and formed while the ends of each IC remain connected to the assembly strip. The assembly strips are then passed to a test apparatus that transmits test signals to the ICs through the formed leads. The IC devices are then separated from the assembly strip using a singulation apparatus, and the separated ICs are stored in tubes for delivery. Visual inspection is also performed at various stages.
Abstract:
A method of distributing clock signals includes receiving a plurality of clock signals into a corresponding plurality of processing blocks; determining frequency offset data between a first clock signal of the plurality of clock signals and each of the other clock signals of the plurality of clock signals; periodically determining phase offset data between the first clock signal and the other clock signals; and transmitting the first clock signal, the frequency offset data, and the phase offset data on a pulse-width modulated clock signal. The method includes receiving a modulated clock signal, the modulated clock signal include a carrier clock signal, a frequency offset data, and a phase offset data on a pulse-width modulated clock signal; and recovering a plurality of clock signals based on the first clock signal, the frequency offset data, and the phase offset data.
Abstract:
An apparatus includes a device comprising a semiconductor junction configured to generate a reference voltage, a voltage divider circuit, a comparator circuit, and a first output circuit. The voltage divider circuit may be configured to generate a first predetermined threshold voltage in response to the reference voltage. The comparator circuit may be configured to generate a first intermediate signal in response to a comparison of the first predetermined threshold voltage and an input signal. The first output circuit may be configured to generate a first output signal in response to the first intermediate signal.
Abstract:
Embodiments described herein a method for controlling operating frequency for a wireless power charging system. Specifically, a transmitter coil at a wireless power transmitter is driven under an operating frequency and an input voltage. Deadtime information at the wireless power receiver is received, from a wireless power receiver having a receiver coil that receives wireless power from the transmitter coil. A microcontroller then determines, based on the received deadtime information or the operating frequency, whether the operating frequency deviates from a target operating frequency range. Based on the determination, one or both of the operating frequency or the input voltage are adjusted thereby causing the operating frequency to fall within the target operating frequency range.
Abstract:
Embodiments described herein provides a battery charging circuit that boosts an input current and feeds the boosted input current to a battery for fast charging. Specifically, the battery charging circuit includes a low dropout regulator (LDO) for providing a voltage, a switch mode charger, coupled between the LDO and a battery, and a capacitor divider, coupled between the LDO and the battery, in parallel to the switch mode charger, for dividing the voltage outputted from the LDO by a factor.
Abstract:
An apparatus includes a phased array antenna panel and one or more dual-polarization beam former circuits mounted on the phased array antenna panel. The phased array antenna panel generally comprises a plurality of dual-polarization antenna elements. The plurality of dual-polarization antenna elements are generally arranged in one or more groups. Each dual-polarization beam former circuit may be coupled to a respective group of the dual-polarization antenna elements. Each dual-polarization beam former circuit generally comprises a plurality of transceiver channels. Each transceiver channel generally comprises a horizontal channel and a vertical channel. Each dual-polarization beam former circuit provides polarization rotation through bias current control in each of the vertical and horizontal channels.