Abstract:
An apparatus for alleviating window buffeting noise and associated vibrations along a rear window of an automotive vehicle is provided. The apparatus includes a baffle received in a recess of a B-pillar. The B-pillar is located forward of the rear window, and the baffle is disposed vertically along the B-pillar. The baffle extends over at least a portion of the height of the opening to the rear window. An actuation mechanism moves the baffle outward of the B-pillar when the window is lowered to a predetermined lower position, such that the baffle deflects air flow and thus reduces window buffeting along the open window. The actuation mechanism also retracts the baffle back into the B-pillar when the window is raised to a predetermined raised position, at which window buffeting is no longer significant.
Abstract:
A tire inflation apparatuses is provided for maintaining a predetermined inflation pressure of a pair of tires mounted a dual wheel unit of a vehicle. The apparatus includes a first and a second pump unit that are connected to a housing that includes a mounting structure for engaging a complementary mounting structure of the dual wheel unit. The first and second pump include first and second pump rods configured to translate in response to rotation of the dual wheel unit. A gearset and an eccentric drive mechanism are arranged to reciprocate the first and second pump rods.
Abstract:
An active hinge for a deployable hood assembly of the type used in a pedestrian protection system for motor vehicles. The active hinge employs a primary latch to mechanically hold the hinge in a non-deployed condition and a secondary latch to mechanically hold the hinge in a deployed condition.
Abstract:
A rotary drive actuation system for actuating a latch including: an output shaft having a member affixed at one end of the output shaft for coupling to a component of the latch; a common drive element affixed to the output shaft at the other end of the output shaft; and a plurality of motors coupled to the common drive element for simultaneously driving the common drive element and the output shaft in a first rotary direction to effect actuation of the latch.
Abstract:
A tailgate assembly for providing access to a cargo bed of an automotive vehicle. The tailgate assembly includes a tailgate and a ramp assembly having a casing and a multi-panel ramp unit. The ramp unit includes a plurality of panels that extend in telescoping relationship with one another and are slideably moveable between a collapsed position with the panels in overlying relationship with one another inside the tailgate, and a lengthened position with the panels extending in generally end to end relationship with one another away from the tailgate. The casing is removeably disposed in the tailgate and receives the ramp unit. A retaining mechanism is coupled to the tailgate and is moveable between a locked position and an unlocked position.
Abstract:
A method for operating a closure panel of a vehicle, comprising: using a processor, determining whether a first proximity sensor and a second proximity sensor located on a periphery of the vehicle have been sequentially activated to indicate an object moving across the first proximity sensor; and, controlling the closure panel to open or close when the first proximity sensor and the second proximity sensor have been sequentially activated.
Abstract:
An electric propulsion system for use with a vehicle including a pair of first wheels, a pair of second wheels, and a gas propulsion system. The electric propulsion system includes a first electric traction motor mounted to one of the first wheels, and a second electric traction motor mounted to the other one of the first wheels. The electric propulsion system includes pair of electric motor controllers each in electrical communication with a respective one of the first or second electric traction motors. Each of the electric motor controllers are also in electrical communication with the system controller and configured to receive vehicle signals from the system controller to control the respective electric traction motors accordingly. Put another way, the pair of electric motor controllers react to vehicle conditions to provide vehicle assist power to the gas propulsion system as needed.
Abstract:
A friction based counterbalance mechanism for coupling with a closure panel to assist in opening and closing of the closure panel for at least a portion of a path between a fully closed position and a fully open position of the closure panel, the counterbalance mechanism including: an elongate member positioned on a longitudinal axis extending between the proximal and distal ends of the counterbalance mechanism, the elongate member having a peripheral surface, the elongate member having a proximal end for coupling to one of the closure panel and a body of a vehicle; a travel member having a body and at least one friction member mounted on the body, the travel member positioned on the longitudinal axis for reciprocation there along and for providing contact between the at least one friction member and the peripheral surface, said contact for generating a friction force in a first region along the longitudinal axis and in a second region along the longitudinal axis; and a support member coupled to the travel element at a proximal end and for coupling at a distal end to the other of the closure panel and a body of a vehicle, the support member for guiding said reciprocation. The friction based counterbalance mechanism can be incorporated as part of a biasing strut such as a spring configured strut.
Abstract:
A method for controlling a blocking component for a latch of a closure panel of a vehicle, the latch having latch components including a ratchet and pawl, the method comprising: determining whether an occupant is in the vehicle and whether a speed of the vehicle is above a first threshold; and blocking release of the latch by positioning the blocking component whenever the occupant is in the vehicle and the speed is above the first threshold, automatically without occupant intervention, into a blocking position adjacent to at least one of the latch components to restrict movement of the at least one of the latch components which movement would cause the latch to open, wherein the blocking position is adjacent either the ratchet or the pawl, and restricts movement of the ratchet or pawl, respectively.
Abstract:
In an example, a vehicle door module has a carrier carrying a plurality of functional door hardware components. The carrier defines a wet side facing towards a door cavity and a dry side facing away from the door cavity. The door includes an inner door panel having a front pocket and a rear pocket. The carrier includes front and rear latch presenters and carries front and rear door latches on the dry side thereof which seat in the front and rear door pockets. The latches are connected to reinforcement plates which are connected by fasteners at positions surrounding the door pockets thus enabling each latch to be easily accessed for service by simply removing the corresponding reinforcement plate, which may be located under an easily removed interior trim panel.