Abstract:
An optical network unit (ONU) interconnected by passive optical network (PON) equipment to an optical line terminal (OLT) is identified using secondary modulation of the optical carrier to impress an identifier of the ONU onto the carrier. This resolves a recurring ONU failure mode detection problem caused by failure of a laser driver that causes the ONU to be stuck in an on state.
Abstract:
The present invention provides distributed communication services based on a presence technology platform. Presence messaging and communication techniques allow a variety of communication agents to cooperate with one another to provide distributed services. Essentially, the messaging between the agents is used to facilitate media sessions and update participating devices of state changes bearing on providing the services. In one embodiment, each of the participating devices is associated with a logic entity, referred to as a presentity, which subscribes to notification services for the other participating devices. When a state change occurs on any one of the participating devices, the corresponding presentity notifies the other devices of the state change. As such, each participating device knows the status of the other participating devices via the presentities and can systematically determine when and how to provide services based on its current state and the current state of the other participating devices.
Abstract:
The present invention uses a portion of an orthogonal spreading code space in a CDMA spectrum for uplink signaling from a user element to a base station. By assigning the user elements one or more signaling codes, which are orthogonal to those used to spread data, to use for uplink signaling, the present invention significantly reduces interference between signaling channels, and between the data channels and the signaling channels, while supporting additional capacity. The signaling codes may be individually assigned to user elements or assigned to groups of user elements. Further, different length signaling codes may be assigned to the user elements to support different signaling rates depending on Quality of Service (QoS) requirements.
Abstract:
The present invention provides a technique for supporting variable bitrate services in an OFDM environment while minimizing the impact of the variations of fading channels and interference. In general, a basic access channel (BACH) is defined by a set number of sub-carriers over multiple OFDM symbols. While the number of sub-carriers remains fixed for the BACH, the sub-carriers for any given BACH will hop from one symbol to another. Thus, the BACH is defined by a hopping pattern for a select number of sub-carriers over a sequence of symbols.
Abstract:
Time cycles in the physical layer of a passive optical network may be shared by multiple transmitting network devices (ONUs) to enable transmission of time sensitive traffic in a time sensitive manner. By allocating channels within the cyclic frame structure of the physical layer of the network, transmission of data from the ONUs to the OLT may be smoothed to enhance time dependent characteristics of the network. Where the underlying physical layer is a SONET/SDH based network, each SONET/SDH frame is divided into a given number of channels, such as 125 channels each of which is 1 nullS long. Each ONU is allocated one or more channels on each frame in which to transmit data to the OLT. The total bandwidth allocated to a given ONU is determined based on the number of channels allocated to that ONU.
Abstract:
High bandwidth services provided in the core of the network may be extended to the network edge by utilizing one or more underground wireless communications links. The underground communications link may be formed by burying a broadcasting antenna in a first underground location and then burying another underground antenna at a geographic point where services are desired. By transmitting the signals underground, it is possible to reach a large number of remote sites without undertaking the expense associated with providing direct high-speed fiber optic, cable, or wireline connections to those sites. Additionally, since the transmission is underground, the wireless communications may be provided in a portion of the spectrum otherwise licensed for use aboveground. This reuse of spectrum in a different transmission medium results in a large increase in the amount of data that may be transmitted over the existing allocated wireless spectrum.
Abstract:
The present invention provides for mapping of plurality of IP flows to a plurality service instances. A plurality of IP flows are received at a PDSN. The header information associated with each IP flow at the PDSN is parsed. Each IP flow is mapped to its corresponding service instance. The mapping criteria are defined by a flow filter. The flow filter can be generated within the PDSN, or outside of the PDSN such as by an MS. Each IP flow is transmitted on its corresponding service instance to its endpoint, such as an MS.
Abstract:
A low data rate wireless channel (control channel) is associated with a high speed broadcast mode wireless channel (data channel). The data channel is divided into discrete code or time slots (access slots), that are unassigned to any particular recipient or user until requested. In the event that a particular user requires a particular resource, access slots are requested through the control channel, allocated to the user, and allocation information is passed back to the requesting user through the control channel. By diverting setup and control traffic to a low-bandwidth, always-on quasi real-time control channel, capacity on the data channel can be freed up to enable the high-speed data channel to be dedicated to transmission of high-bandwidth traffic. Thus, scarce high-bandwidth resources can be utilized to the full extent to reduce the probability of time slots not being utilized due to scheduling conflicts and without requiring transmissions to stop to perform housekeeping functions between transmissions.
Abstract:
A method of allocating bandwidth resources in a telecommunications network to which a plurality of devices are connected, involves the steps of: a) receiving from a first of the devices engaged in a call a suspend signal indicative that outgoing traffic from that device has been temporarily suspended, while the device remains engaged in the call; and b) upon receipt of the signal, allocating additional bandwidth to one or more other of the devices. The allocation of bandwidth can be carried out by one of the devices engaged in a call, or by a network bandwidth allocation device which oversees the bandwidth allocation used by each calling device and adjusts allocations dynamically as devices suspend and recommence their outgoing traffic. The adjustment of bandwidth allocation is preferably achieved by the device(s) switching codecs, and the suspend signals preferably result from the deactivation of transmissions in response to a voice activity detection unit in the first device.
Abstract:
An optical core node that includes optical switching planes interfaces, at input, with multi-channel input links and, at output, with multi-channel output links. The number of channels per link can differ significantly among the links, necessitating that the input (output) links have different connection patterns to the switching planes. Such an optical core node requires new methods of assigning an incoming wavelength channel to one of the optical switching planes. The assignment of the channels of input and output links to input and output ports is established in a manner that increases input-output connectivity and, hence, throughput. Additionally, the networks that may be formed with such optical core nodes require new routing methods. A preferred method of selecting a path through the core node favors switching planes connecting to a small number of links. In a time-division-multiplexing (TDM) mode, the method of path selection is complemented by temporal packing of TDM frames.