摘要:
A wavelength selective switch is realized by combining a quantized dispersion element and an array of switching means. The quantized dispersion element enables to concentrate all the wavelengths within predetermined wavelength bands onto the same location in the switching array. With this arrangement, a low fill factor switching array can be used while maintaining good flat-top spectral performance with no spectral dips and improving alignment tolerances.
摘要:
Sensor arrays utilizing standard 1null2 couplers reduce the differences in the returned optical power levels by appropriate selection of the coupling ratios. Preferred embodiments are described that comprise 6 distribution fiber lines and 16 return fiber lines. One embodiment includes 16 sensor groups in which each sensor group has a dedicated return line. In another embodiment, 8 sensor groups are configured so that no two adjacent sensors have either a common distribution fiber line or a common return fiber line.
摘要:
An optical wavelength multiplexing device for use in an optical networking environment is presented. The device features optically dispersive elements combined with an array of reflectors that permit both realization of flat-top filter characteristics together with noise reduction, and in some embodiments wavelength routing, blocking or add-drop functionality. Additionally, the design of the device is easily modified to dissipate light having a wavelength that does not correspond to any predetermined wavelength channel.
摘要:
The present invention relates to a method using a node, a system comprising a node and a node for filtering signals in a wavelength division multiplexing (WDM) optical communications system, especially for re-configurably adding and dropping signals to and from an optical fibre path. The node comprising a drop filter, an add filter, a signal channel receiver, and a signal channel transmitter each being connected to a switch for signal channel relaying between said network, and signal channel dropping and adding from and to said network. The node provides low loss for relayed signals by allowing the drop filter to have a low crosstalk isolation, and provides high crosstalk isolation for dropped signal channels by connecting said receiver to the switch through an additional filter with high filtering characteristics for at least one predetermined signal.
摘要:
An optical device including dynamic channel equalization is provided. In an exemplary multiplexer or line amplifier configuration the device includes a plurality of separate optical paths, each of which receiving a separate group of optical signals. Each group of optical signals is provided to an associated variable optical attenuator. Separate inputs of an optical combiner are each coupled to an output of an associated one of the variable optical attenuators. The optical combiner has an output providing the separate groups of optical signals in an aggregated form on an aggregate optical signal path. An optical performance monitor is coupled to the aggregate optical signal path, and is configured to detect an optical signal to noise ratio of each of the separate groups. The monitor supplied a feedback signal to corresponding ones of the variable optical attenuators for adjusting a respective attenuation associated with each of the attenuators in dependence of the detected optical signal to noise ratios. The device may also be provided in a demultiplexer configuration.
摘要:
An enhanced volume phase diffraction grating provides high dispersion, uniformly high diffraction efficiency and equal diffraction efficiencies for all polarizations across a wide range of wavelengths. In preferred embodiments, the thickness of the volume phase material and the modulation of its refractive index are jointly established to provide equalization of diffraction efficiencies for all polarizations over a wide range of wavelengths. The equalization occurs where the S and P diffraction efficiencies are both at a maximum.
摘要:
A multiplexing and de-multiplexing system that may both use the same wavelength division multiplexing (WDM) device. For multiplexing, light sources provide a plurality of light beams having different wavelengths and the WDM forms a single light beam. For de-multiplexing, a light source provides a light beam having a plurality of different light wavelengths and the WDM forms a plurality of output light beams each having respective of the wavelengths. The WDM devices may particularly be formed from optically multi-dimensional planar gratings and cubical gratings which may diffract single wavelengths, sets of wavelengths, and ranges of wavelengths each with respect to one optical dimension present. The gratings may be discrete or integrated in the multiplexing or the de-multiplexing devices. Complex embodiments of the multiplexing system, such as an interleaver, and complex embodiments of the de-multiplexing system, such as a de-interleaver, can be formed using blocks of the gratings.
摘要:
An optical add-drop multiplexer 400 includes an optical demultiplexer 410 having an input port coupled to receive an wavelength multiplexed optical signal. The optical demultiplexer 410 has a plurality of outputs, each for carrying an optical signal at one of the plurality of wavelengths. Switch optics 440 includes a channel coupled to each output. Each channel of the switch optics includes an analog mirror 424 coupled to receive the optical signal for that channel. The analog mirror 424 is rotatable along at least one axis is able to reflect a received optical signal in more than two directions. Each channel also includes an in/out lens device 422 aligned to receive the optical signal from the analog mirror 424 in a pass mode and an add/drop lens device 426 aligned to receive the optical signal from the analog mirror device 424 in an add/drop mode.
摘要:
In a wavelength-division multiplexing system with an OADM mounted, part of the chromatic dispersion on a transmission line is compensated for by a chromatic dispersion compensator for dropped wavelength that is provided in the wavelength-division multiplexing system, and the other part of the chromatic dispersion is compensated for by a chromatic dispersion compensator for added wavelength that is similarly provided in the wavelength-division multiplexing system. Thus, the chromatic dispersion compensator for dropped wavelength acts on the signal dropped by the OADM, and the chromatic dispersion compensator for added wavelength acts on the added signal. Both the chromatic dispersion compensators act on the passing signal. With the chromatic dispersion compensators being mounted in the optical transmission apparatus before the system is upgraded, it is not necessary to alter the chromatic dispersion compensating method and the variation of the communication quality can be suppressed.