Abstract:
A three-dimensional part printed using an additive manufacturing technique, which includes sets of printed cell layers, each defining an array of hollow cells with wall segments, and sets of printed transition layers, each being disposed between adjacent printed cell layers, where the sets of printed transition layers each comprise sloped walls that diverge from a first portion of the wall segments and that converge towards a second portion of the wall segments to interconnect the hollow cells of adjacent printed cell layers, and where the sloped walls of adjacent printed transition layers have printing orientations that are rotated from each other in a build plane.
Abstract:
A method for printing a three-dimensional part with an additive manufacturing system, the method including printing layers of the three-dimensional part and of a support structure for the three-dimensional part from multiple print heads or deposition lines, and switching the print heads or deposition line between stand-by modes and operating modes in-between the printing of the layers of the three-dimensional part and the support structure. The method also includes performing a purge operation for each print head or deposition line switched to the operating mode, where the purge operation includes printing a layer of at least one purge tower from the print head or deposition line switched to the operating mode.
Abstract:
A consumable assembly comprising a container portion configured to retain a supply of filament, a guide tube connected to the container portion, and a pump portion connected to the guide tube.
Abstract:
A liquefier assembly for use in an additive manufacturing system, where the liquefier assembly includes a liquefier tube, a nozzle secured to an outlet end of the liquefier tube, a heating element extending at least partially around the liquefier tube to generate a hot zone in the liquefier tube, a hollow spacer disposed in the channel; and a hollow liner disposed in the channel abutting against an upstream shoulder of the hollow spacer.
Abstract:
An additive manufacturing system for printing three-dimensional parts, the system comprising a heatable region, a receiving surface, a print head configured to print a three-dimensional part onto the receiving surface in a layer-by-layer manner along a printing axis, and a drive mechanism configured to index the receiving surface along the printing axis such that the receiving surface and at least a portion of the three-dimensional part out of the heated region.
Abstract:
A ribbon liquefier comprising an outer liquefier portion configured to receive thermal energy from a heat transfer component, and a channel at least partially defined by the outer liquefier portion, where the channel has dimensions that are configured to receive the ribbon filament, and where the ribbon liquefier is configured to melt the ribbon filament received in the channel to at least an extrudable state with the received thermal energy to provide a melt flow. The dimensions of the channel are further configured to conform the melt flow from an axially-asymmetric flow to a substantially axially-symmetric flow in an extrusion tip connected to the ribbon liquefier.
Abstract:
A consumable filament for use in an extrusion-based additive manufacturing system, where the consumable filament comprises a core portion of a first thermoplastic material, and a shell portion of a second thermoplastic material that is compositionally different from the first thermoplastic material, where the consumable filament is configured to be melted and extruded to form roads of a plurality of solidified layers of a three-dimensional object, and where the roads at least partially retain cross-sectional profiles corresponding to the core portion and the shell portion of the consumable filament.
Abstract:
An additive manufacturing system comprising a transfer medium configured to receive the layers from a imaging engine, a heater configured to heat the layers on the transfer medium, and a layer transfusion assembly that includes a build platform, and is configured to transfuse the heated layers onto the build platform in a layer-by-layer manner to print a three-dimensional part.
Abstract:
An additive manufacturing system comprising a transfer medium configured to receive the layers from a imaging engine, a heater configured to heat the layers on the transfer medium, and a layer transfusion assembly that includes a build platform, and is configured to transfuse the heated layers onto the build platform in a layer-by-layer manner to print a three-dimensional part.
Abstract:
A filament cassette and a filament loading assembly supply modeling filament to a liquifier in a three-dimensional deposition modeling machine. Two or more cassettes containing spooled filament are inserted into the machine. A strand of filament from a first one of the cassettes is fed to the liquifier for extrusion. Without operator intervention, the filament strand from the first cassette is withdrawn from the liquifier, and a filament strand from a second one of the cassettes is fed to the liquifier. The switching of filament feed sources is triggered by an event, such as an identification that the filament from the first cassette has reached a predetermined minimum length. In this manner, a used primary filament cassette is automatically replaced with a standby filament cassette, so that the machine need not experience downtime waiting for an operator to change the cassettes.