Abstract:
The present technology is generally directed to methods of increasing coke production rates for coke ovens. In some embodiments, a coal charging system includes a false door system with a false door that is vertically oriented to maximize an amount of coal being charged into the oven. A lower extension plate associated with embodiments of the false door is selectively, automatically extended beyond a lower end portion of the false door in order to extend an effective length of the false door. In other embodiments an extension plate may be coupled with an existing false door having an angled front surface to provide the existing false door with a vertically oriented face.
Abstract:
The present technology is generally directed to vent stack lids and associated systems and methods. In particular, several embodiments are directed to vent stack lids having improved sealing properties in a coke processing system. In a particular embodiment, a vent stack lid comprises a first lid portion proximate to and at least partially spaced apart from a second lid portion. The vent stack lid further comprises a first sealing portion coupled to the first lid portion and a second sealing portion coupled to the second lid portion. In several embodiments, the second sealing portion at least partially overlaps the first sealing portion over the space between the first and second lid portions. In further embodiments, at least one of the first or second sealing portions includes layers of tadpole seals, spring seals, rigid refractory material, and/or flexible refractory blanket.
Abstract:
The present technology describes methods and systems for an improved quench tower. Some embodiments improve the quench tower's ability to recover particulate matter, steam, and emissions that escape from the base of the quench tower. Some embodiments improve the draft and draft distribution of the quench tower. Some embodiments include one or more sheds to enlarge the physical or effective perimeter of the quench tower to reduce the amount of particulate matter, emissions, and steam loss during the quenching process. Some embodiments include an improved quench baffle formed of a plurality of single-turn or multi-turn chevrons adapted to prevent particulate matter from escaping the quench tower. Some embodiments include an improved quench baffle spray nozzle used to wet the baffles, suppress dust, and/or clean baffles. Some embodiments include a quench nozzle that can fire in discrete stages during the quenching process.
Abstract:
The present technology is generally directed to systems and methods for improving quenched coke recovery. More specifically, some embodiments are directed to systems and methods utilizing one or more of a screen, barrier, or reflector panel to contain or redirect coke during or after quenching. In a particular embodiment, a quench car system for containing coke includes a quench car having a base, a plurality of sidewalls, and a top portion. The system can further include a permeable barrier covering at least a portion of the top of the quench car, wherein the permeable barrier has a plurality of apertures therethrough.
Abstract:
The present technology is generally directed to non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods. In some embodiments, a coking system includes a coke oven and an uptake duct in fluid communication with the coke oven. The uptake duct has an uptake flow vector of exhaust gas from the coke oven. The system also includes a common tunnel in fluid communication with the uptake duct. The common tunnel has a common flow vector and can be configured to transfer the exhaust gas to a venting system. The uptake flow vector and common flow vector can meet at a non-perpendicular interface to improve mixing between the flow vectors and reduce draft loss in the common tunnel.
Abstract:
A duct intersection comprising a first duct portion and a second duct portion extending laterally from a side of the first duct portion. At least one flow modifier is mounted inside one of the first and second duct portions. The flow modifier is a contoured duct liner and/or the flow modifier includes at least one turning vane. The duct intersection may also include a transition portion extending between the first and second duct portions, wherein the transition portion has a length extending along a side of the first duct portion and a depth extending away from the side of the first duct portion, wherein the length is greater than a diameter of the second duct portion.
Abstract:
A low-carbon granulated metallic unit having a mass fraction of carbon between 0.1 wt. % and 4.0 wt. % is disclosed herein. Additionally or alternatively, the granulated metallic unit can comprise a mass fraction of phosphorous of at least 0.025 wt. %, a mass fraction of silicon between 0.25 wt. % and 1.5 wt. %, a mass fraction of manganese of at least 0.2 wt. %, a mass fraction of sulfur of at least 0.0001 wt. %, and/or a mass fraction of iron of at least 94.0 wt. %.
Abstract:
High quality coke products including unique properties, such as Coke Reactivity Index (CRI) properties, fixed carbon content, and sulfur content.
Abstract:
The present technology relates to systems and methods for reducing leaks in a system for coking coal. For example, some embodiments provide systems and method for treating a cracked or leaking surface in a system for coking coal. In particular, the present technology includes systems having one or more substances configured to reduce an airflow through one or more cracks by creating an at least partially impermeable patch. The present technology further includes methods for treating surfaces having one or more cracks to reduce an airflow through the one or more cracks.
Abstract:
Coal blends used to produce foundry coke products are disclosed herein. Coal blends can include first coals having a first volatile matter mass fraction less than or equal to a first threshold, and second coals having a second volatile mass fraction greater than or equal to a second threshold that is less than the second threshold. The coal blend can have an ash fusion temperature less than 2600° F. and an aggregated volatile matter mass fraction between 15% and 25%.