Abstract:
A display apparatus having a heat dissipating structure for a driver integrated circuit is provided. The display apparatus may be a plasma display apparatus including a chassis base, a plasma display panel (PDP) adjacent to a first side of the chassis base, and a driving circuit board attached on a second side of the chassis base, the second side being opposite to the first side where the PDP is attached. The plasma display apparatus also includes a driver integrated circuit (IC) electrically connected to electrodes of the PDP and the driving circuit board at a position therebetween, the driver IC selectively providing a voltage to the electrodes of the PDP in accordance with signals controlled by the driving circuit board. The plasma display apparatus also has a heat dissipation unit positioned at the edge of the PDP wherein the heat dissipation unit dissipates heat from the driver IC.
Abstract:
A plasma display panel including a first panel, address electrodes formed on the first panel in a predetermined pattern, a first dielectric layer formed on the first panel and covering the address electrodes, a partition structure having unit partitions discontinuously formed on the first dielectric layer to partition a discharge space, the unit partitions being parallel to the address electrodes and each having auxiliary partitions, red, green and blue phosphor layers coated in the partitioned discharge space, a second panel, which is coupled to the first panel to form the discharge space and which is transparent, a plurality of pairs of sustaining electrodes formed on an inner surface of the second panel and having sets of first and second electrodes at a predetermined angle with respect to the address electrodes, and a second dielectric layer formed on the second panel and covering the sustaining electrodes.
Abstract:
A plasma display panel reduces noise caused by the formation of minute gaps between the first substrate and the second substrate. The plasma display panel includes a first substrate and a second substrate opposing one another with a predetermined gap therebetween, and a sealant formed on opposing surfaces of the first substrate and the second substrate. The sealant is formed around outer circumferential areas of the first substrate and the second substrate to seal the first substrate and the second substrate together. The sealant is formed of regions having a first width of substantially the same size and of regions having a second width greater than the size of the first width.
Abstract:
A plasma display device including a protective layer disposed adjacent to a front surface of a plasma display panel, a chassis base, wherein a front surface of the chassis base is disposed adjacent to a rear surface of the plasma display panel, circuit units disposed on a rear surface of the chassis base and a conductive member that electrically connects the protective layer to the chassis base, wherein the protective layer serves to filter electromagnetic radiation emitted from the plasma display panel.
Abstract:
A Plasma Display Panel (PDP) assembly includes: a panel assembly including a front panel and a rear panel disposed to face the front panel; a chassis base adapted to support the panel assembly; driving circuit units adapted to be attached to the chassis base; flexible printed cables adapted to have both ends electrically connected to terminals of electrodes of the panel assembly and connectors of the driving circuit units, to transmit an electrical signal; a filter assembly adapted to be attached to an exterior surface of the filter assembly; protection units adapted to be attached to the filter assembly, to ground the filter assembly, and to dissipate heat generated during an operation of the panel assembly; and a case adapted to accommodate the panel assembly, the chassis base, the driving circuit units, the flexible printed cables, the filter assembly, and the protection unit.
Abstract:
A plasma display panel plasma display panel includes first and second substrates facing each other, address electrodes extended in a first direction, barrier ribs disposed between the first and the second substrates to define discharge cells and display electrodes extended in a second direction crossing the first direction. The display electrodes have scan and sustain electrodes. The scan electrodes are drawn to a first periphery of the first and the second substrates to form scan electrode terminals. The sustain electrodes are coupled to a connection wire, and at least one of the sustain electrodes is drawn to the first periphery to form a sustain electrode terminal.
Abstract:
A plasma display panel includes: an upper substrate; an upper dielectric layer formed on a lower surface of the upper substrate; sustain electrodes disposed in the upper dielectric layer; a lower substrate facing the upper substrate; a lower dielectric layer formed on an upper surface of the lower substrate; address electrodes formed in the lower dielectric layer so as to cross the sustain electrodes; main barrier ribs disposed on the lower dielectric layer so as to define discharge cells corresponding to regions where the sustain electrodes and the address electrodes cross each other; a phosphor layer formed in the discharge cells; and dummy barrier ribs disposed at an outermost portion of the main barrier ribs, and including respective dummy units which protrude from the main barrier ribs toward an outer portion, and which are connected to each other. The connection portions between the dummy units are disposed so as to overlap with at least one of terminal units of the sustain electrodes and terminal units of the address electrodes.
Abstract:
A Plasma Display Panel (PDP) includes: a first substrate; a second substrate arranged parallel to the first substrate; a partition wall interposed between the first and second substrates; a groove formed on the partition wall; and a reflection preventive layer formed on the groove to reduce reflective luminance in a display area.
Abstract:
A plasma display panel is provided having a plurality of scan electrodes and sustain electrodes formed parallel to each other in pairs on a first substrate, and a plurality of address electrodes formed on a second substrate that cross the plurality of first and second electrode pairs. A reset waveform is applied to a scan electrode during a reset period, and a scan pulse that falls from a first voltage level to a second voltage level is applied to the can electrode during an address period. A pre-scan pulse of a third voltage level, which is higher than the first voltage level, is applied to a scan electrode between the reset and address periods, and either a magnitude of the third voltage level or a width of the pre-scan pulse is adjusted according to patterns of subfield data.
Abstract:
A display apparatus having a heat dissipating structure for a driver integrated circuit is provided. The display apparatus may be a plasma display apparatus including a chassis base, a plasma display panel (PDP) adjacent to a first side of the chassis base, and a driving circuit board attached on a second side of the chassis base, the second side being opposite to the first side where the PDP is attached. The plasma display apparatus also includes a driver integrated circuit (IC) electrically connected to electrodes of the PDP and the driving circuit board at a position therebetween, the driver IC selectively providing a voltage to the electrodes of the PDP in accordance with signals controlled by the driving circuit board. The plasma display apparatus also has a heat dissipation unit positioned at the edge of the PDP wherein the heat dissipation unit dissipates heat from the driver IC.