Abstract:
A method of detecting a spreading code of a received spread-spectrum signal, in particular a spreading code identifying a space vehicle of a GPS system. The method comprises correlating the received spread-spectrum signal with a reference signal to detect the presence of one of a number of reference spreading codes. The correlating further comprises differentiating at least one of the received spread-spectrum signal, the reference signal, and the correlation signal, the correlating resulting in a differentiated correlation signal.
Abstract:
Method and system are disclosed for providing advanced RAKE delay control in wireless communications systems. The RAKE delay control method and system of the invention is capable of tracking presently known paths over time and merging the tracking results with new path searcher results. The invention is particularly suitable for devices where the resources (e.g., computational load, power) available for detecting the multipath components are limited. The result is a resource efficient architecture for positioning the RAKE fingers to best extract the signal power available in the channel and to utilize the inherent diversity due to the multipath nature of the signal.
Abstract:
Controlling the polarization state of signals to be transmitted from a MIMO capable radio base station node to a plurality of user equipment, which radio base station node comprises a precoder unit connecting a first and a second virtual antenna port to a respective first and second transmit antenna port, by the steps of controlling (S10) a relative phase between transmitted signals from the first and second transmit antenna port to provide a predetermined pair of orthogonal polarization states for signals transmitted on the first and second virtual antenna ports, and interchanging (S20) the polarization states of the first and second virtual antenna ports, to provide transmitted polarized signals with alternating polarization states.
Abstract:
A method is disclosed of scheduling up-link transmissions for a number of terminals of a wireless communication system into a number of groups, wherein each group comprises terminals intended for simultaneous up-link transmission during a respective period of time. A subset metric may be calculated for each of a number of subsets of terminals based on transmissions received from the terminals of the subset. The subset metric is indicative of a simultaneous transmission suitability measure for the terminals of the subset. The subsets may be processed in subset metric order, starting with the subset having a subset metric indicating a least suitability of simultaneous transmission. During the processing, each terminal of the subset that is not already scheduled in a group may be scheduled in a group that does not already comprise another terminal of the subset. Information indicative of the period of time during which a scheduled terminal is intended to transmit may be transmitted to each of the scheduled terminals. Corresponding computer program product, scheduler and arrangement are also disclosed.
Abstract:
A target link signal may be received at a receiving device with the target link signal being received in a received signal also including an interfering link signal. A quality of the interfering link signal in the received signal may be estimated at the receiving device to provide an estimated interfering link signal quality. One of a plurality of interference cancellation techniques may be selected responsive to the estimated interfering link signal quality, and an interference cancellation signal may be generated using the selected one of the plurality of interference cancellation techniques. Information of the interference cancellation signal may be incorporated in the received signal. Responsive to incorporating information of the interference cancellation signal in the received signal, the received signal may be demodulated to provide a demodulated target link signal, and the demodulated target link signal may be decoded to provide a target link bit stream.
Abstract:
A CDMA multi-code joint demodulation solution in which impairment suppression and channel matching operations are performed prior to despreading. Embodiments include a linear front end that performs chip-level suppression of signal components that are not included in a subsequent joint demodulation process. The pre-processing stage also carries out metric preparation and provides a vector decision statistic that is processed by a joint demodulation stage to extract per-code soft values for the symbols of interest in the received signal. Both code-specific and code-averaged versions of the linear processing are disclosed, as are several front-end configurations with equivalent performance, but different complexity trade-offs. These new approaches use a block formulation, requiring a set of input chip samples as an input, and perform all operations as matrix-vector multiplications, which is an approach amenable to efficient DSP or hardware implementation.
Abstract:
The present invention includes a method and apparatus for autonomously determining by a first UE the identities (IDs) of one or more other UEs that are operating in or around the same network area as the first UE. More particularly, the first UE determines with a defined reliability the UE ID of an otherwise unknown UE based on receiving and processing an HS-SCCH transmission targeted to the unknown UE. By learning actual UE IDs for one or more other UEs operating in or around the same area as the first UE, the first UE can then properly decode HS-SCCH transmissions to those other UEs, and thereby gain knowledge of the signal structures used for data (HS-PDCH) transmissions to those other UEs. Advantageously, the first UE applies such knowledge in its desired-signal receiver processing, such as for enhancing channel estimation and/or performing structured-signal interference cancellation.
Abstract:
Mobile communication system equipment avoids interfering with another transmitter's operation. Sensing information indicating whether the other transmitter's signal has been detected is received from remote sensors, wherein each of the remote sensors is situated at a respective one of two or more sensor locations. The sensing information and information about the sensor locations is used to ascertain one or more exclusion boundaries needed to avoid interfering with the other transmitter's use of the spectral resource. Beamforming parameters are ascertained that will enable the main node to transmit within one or more predefined geographical areas except for any portion of a predefined area located on a far side of the one or more exclusion boundaries. Two or more adjusted signals are produced as a function of the beamforming parameters and one or more signals to be transmitted. The adjusted signals are transmitted from respective ones of two or more antennas.
Abstract:
The teachings herein disclose methods and apparatus that simplify impairment correlation estimation for received signal processing, based on determining, for any given processing interval, which impairment contributors should be considered in the estimation of overall received signal impairment correlations. These simplifications reduce computational processing requirements, allowing reduced circuit complexity and/or reduced operating power, and improve receiver performance. A corresponding transmitter and transmission method include transmitting multiple information streams to targeted receivers according to ongoing scheduling, and controlling the ongoing scheduling to reduce the number of impairment contributors considered in impairment correlation estimation at the targeted receivers. In one embodiment, a receiver identifies which impairment contributors to consider based on receiving control information. In another embodiment, the receiver identifies the impairment contributors to consider based on background processing, e.g., background determination of parametric model fitting parameters for a plurality of impairment contributors, and observing those model fitting parameters over time.
Abstract:
The teachings herein disclose interference cancellation processing that uses hard decision logic for simplified estimation of interfering signals, in combination with soft scaling of the hard decisions for better interference cancellation performance, particularly in low signal quality conditions. In one aspect, the soft scaling may be understood as attenuating the amount of interference cancellation applied by a receiver, in dependence on the dynamically changing received signal quality at the receiver. More attenuation is applied at lower signal quality because the hard decisions are less reliable at lower signal qualities, while less (or no) attenuation is applied at higher signal qualities, reflecting the higher reliability of the hard decisions at higher signal qualities. Signal quality may be quantized into ranges, with a different value of soft scaling factor used for each range, or a soft scaling factor may be calculated for the continuum of measured signal quality.