摘要:
A method of fabricating a core for a ceramic shell mold is disclosed. A porous core body is formed from at least about 50% by weight of at least one rare earth metal oxide. The core body is heated under heating conditions sufficient to provide the core with a density of about 35% to about 80% of its theoretical density. The core body is then infiltrated with a liquid colloid or solution of at least one metal oxide compound, e.g., rare earth metal oxides; silica, aluminum oxide, transition metal oxides, and combinations thereof. The infiltrated core body is then heated to sinter the particles without substantially changing the dimensions of the core body. Mold-core assemblies which include such a core body are also described. A description of processes for casting a turbine component, using the core, is also set forth herein.
摘要:
An apparatus for incorporating an elemental component in gaseous form into a molten metal is described. The apparatus comprises a container for holding the molten metal; means for cooling the container; heating means for maintaining the metal in the molten state; and a canopy which covers the top of the container. The apparatus also includes at least one aperture through which a desired gaseous material can be fed from a gas source. A related method for incorporating an elemental component in gaseous form into a molten metal is also described. The method includes the step of providing the metal in a container apparatus as described above, and feeding the gaseous elemental component from a gas source into the container, while maintaining the metal in the molten state. Articles prepared by such a method are also disclosed, as well as niobium base composites which comprise niobium, silicon, and nitrogen.
摘要:
A lamp comprising an arc envelope and a niobium end structure coupled to the arc envelope, and wherein the end structure is shielded from a dosing material disposed within the arc envelope.
摘要:
A lamp is provided with an axially and radially graded structure to reduce the possibility of thermal stresses, cracks, and other defects in the lamp. In one embodiment, a system includes a ceramic lamp having a ceramic arc envelope and an end structure coupled to the ceramic arc envelope, wherein the end structure is graded both axially and radially into a plurality of regions. In another embodiment, a system includes a lamp having a layered end structure with a plurality of layers disposed one over another and that extend in both axial and radial directions relative to an axis of the lamp, wherein the plurality of layers include different materials having different coefficients of thermal expansion, Poisson's ratios, or elastic moduli, or a combination thereof,.
摘要:
A method of fabricating a core for a ceramic shell mold is disclosed. A porous core body is formed from at least about 50% by weight of at least one rare earth metal oxide. The core body is heated under heating conditions sufficient to provide the core with a density of about 35% to about 80% of its theoretical density. The core body is then infiltrated with a liquid colloid or solution of at least one metal oxide compound, e.g., rare earth metal oxides; silica, aluminum oxide, transition metal oxides, and combinations thereof. The infiltrated core body is then heated to sinter the particles without substantially changing the dimensions of the core body. Mold-core assemblies which include such a core body are also described. A description of processes for casting a turbine component, using the core, is also set forth herein.
摘要:
A niobium-silicide refractory metal intermetallic composite adapted for use in a turbine component. The niobium-silicide refractory metal intermetallic composite comprises: between about 19 atomic percent and about 24 atomic percent titanium; between about 1 atomic percent and about 5 atomic percent hafnium; between about 16 atomic percent and about 22 atomic percent silicon; between about 7 atomic percent and about 14 atomic percent chromium; from about 1.5 atomic percent to about 3 atomic percent tin; and a balance of niobium. The niobium silicide refractory intermetallic composite contains a tetragonal phase, which comprises a volume fraction from 0.35 to 0.5 of the niobium silicide refractory intermetallic composite, and a hexagonal M3Si5 silicide phase (wherein M is at least one of Nb and Hf) which comprises a volume fraction comprises less than 0.25 of the niobium silicide refractory intermetallic composite. A ratio of the sum of atomic percentages of niobium and tantalum present in said niobium silicide refractory intermetallic composite to the sum of atomic percentages of titanium and of hafnium present in said niobium silicide refractory intermetallic composite has a value from 1.5 to 2.0.
摘要翻译:适用于涡轮机部件的铌硅化物耐火金属金属间复合材料。 所述铌 - 硅化物难熔金属金属间复合物包括:约19原子%至约24原子%的钛; 约1原子%至约5原子%的铪; 介于约16原子%和约22原子%之间的硅; 约7原子%至约14原子%的铬; 从约1.5原子%至约3原子%的锡; 和铌的平衡。 所述铌硅化物难熔金属间复合材料包含四方相,其包含硅化铌耐火金属间复合材料的0.35至0.5的体积分数和六方晶系的N 3 Si 5 Si 5 Si 包括体积分数的相(其中M是Nb和Hf中的至少一种)包括小于0.25的硅化铌耐火金属间复合材料。 所述铌硅化物难熔金属间化合物中存在的铌和钽的原子百分比之和与存在于所述铌硅化物耐火金属间复合材料中的钛和铪的原子百分比之和的比值为1.5至2.0。
摘要:
A filament comprises a generally thin metal component, such as a sheet, ribbon, or foil. The filament comprises at least one emitter, at least one current-condensing structure and a tab on each end of the at least one emitter. Each tab is connectable to a support system, comprising for example a lead and attachment post. When a current is passed through the filament, the current-condensing structure establishes current flow through the filament resulting in a desired temperature distribution across the emitter, for example a substantially uniform temperature distribution. A predictive tool for determining a geometry of a filament to provide a desired temperature distribution is set forth. The filament may be curved, and methods and systems for providing a curved filament are also provided. Attachment systems are further disclosed for attaching an emitter to a support structure.
摘要:
A niobium-silicide refractory metal intermetallic composite having enhanced material characteristics, such as oxidation resistance, creep resistance, and toughness, and turbine components made therefrom. The composite comprises between about 14 atomic percent and about 26 atomic percent titanium; between about 1 atomic percent and about 4 atomic percent hafnium; up to about 6 atomic percent tantalum; between about 12 atomic percent and about 22 atomic percent silicon; up to about 5 atomic percent germanium; up to about 4 atomic percent boron; between about 7 atomic percent and about 14 atomic percent chromium; up to about 3 atomic percent iron; up to about 2 atomic percent aluminum; between about 1 atomic percent and about 3 atomic percent tin; up to about 2 atomic percent tungsten; up to about 2 atomic percent molybdenum; and a balance of niobium, wherein a ratio of a sum of atomic percentages of niobium and tantalum present in said niobium silicide refractory intermetallic composite to a sum of atomic percentages of titanium and hafnium present in said niobium silicide refractory intermetallic composite has a value between about 1.4 and about 2.2 (i.e.,1.4
摘要:
A niobium-based silicide composite exhibiting creep resistance at temperatures equal to or greater than 1150° C. The niobium-based silicide composite comprises at least silicon (Si), hafnium (Hf), titanium (Ti), and niobium (Nb). A concentration ratio of Nb:(Hf+Ti) is equal to or greater than about 1.4. The niobium-based silicide composite exhibits a creep rate less than about 5×10−8s−1 at temperatures up to about 1200° C. and at a stress of about 200 MPa.
摘要翻译:铌系硅化物复合体至少包含硅(Si),铪(Hf),钛(Ti)和铌(Nb)等,该铌系硅化物复合体在等于或大于1150℃的温度下具有抗蠕变性。 Nb:(Hf + Ti)的浓度比等于或大于约1.4。 铌基硅化物复合材料在高达约1200℃的温度和约200MPa的应力下表现出小于约5×10 -8 s -1的蠕变速率。
摘要:
A method and apparatus for locally and successively melting a material by induction heating using a horizontal floating-zone crucible to refine and/or analyze the material. An electromagnetic field is generated to create a localized molten zone within the material that is at least partially levitated within the crucible. The crucible has an upper peripheral opening so that an upper portion of the molten zone is generally at a higher temperature than the lower portion of the molten zone adjacent the crucible wall. As a result, insoluble inclusions within the material separate and float to the upper portion of the molten zone. The molten zone may be translated longitudinally through the material to drive the inclusions toward one end of the material. The process can be carried out to refine or characterize the material, or to determine the solidus and liquidus temperatures of the material.