Abstract:
A resource allocation system begins with an ordered plan for matching requests to resources that is sorted by priority. The resource allocation system optimizes the plan by determining those requests in the plan that will fail if performed. The resource allocation system removes or defers the determined requests. In addition, when a request that is performed fails, the resource allocation system may remove requests that require similar resources from the plan. Moreover, when resources are released by a request, the resource allocation system may place the resources in a temporary holding area until the resource allocation returns to the top of the ordered plan so that lower priority requests that are lower in the plan do not take resources that are needed by waiting higher priority requests higher in the plan.
Abstract:
Disclosed herein are systems and methods for managing information management operations. The system may be configured to employ a work flow queue to reduce network traffic and manage server processing resources. The system may also be configured to forecast or estimate information management operations based on estimations of throughput between computing devices scheduled to execute one or more jobs. The system may also be configured to escalate or automatically reassign notification of system alerts based on the availability of system alert recipients. Various other embodiments are also disclosed herein.
Abstract:
According to certain aspects, a method is disclosed for registry key management in a network. The method includes detecting registry keys stored in a registry of a plurality of client computing devices and storing on a remote database a copy of the registry keys. The remote database is in communication with each of the client computing devices. The method further includes tracking with a management module running on the client computing devices modifications made to the registry of the first client device. In addition, the method includes modifying the copy of the registry keys on the remote database to reflect the modifications to the registry of the first client computing device; detecting a rebuild operation of the first client computing device; and automatically reinstalling registry keys on the first client computing device based on the copy of the registry keys stored on the remote database.
Abstract:
According to certain aspects, systems and methods are provided for grouping clients together in a networked data storage environment. For instance, clients can be grouped together based on the software installed on the client or the client type. Each client group can be configured to maintain the configuration of clients within the client group. For example, one client group can be configured to ensure that a particular software suite remains up-to-date. Another client group can be configured to ensure that data within a particular directory or on a particular storage device associated with each client of the client group is backed up each night.
Abstract:
A log monitoring system uses log monitoring rules to monitor log data generated by applications executing on a client computing device. By monitoring log data, the system detects that one or more triggering events have occurred on the client computing device. In response, the log monitoring system can perform one or more appropriate remedial actions. Additionally, in response to the detected event(s), the log monitoring system can extract a select subset of relevant data from the client and transmit the subset of data to a separate repository for storage and/or processing.