Abstract:
A glass article includes a glass core layer and a glass cladding layer adjacent to the core layer. An average coefficient of thermal expansion (CTE) of the core layer is greater than an average CTE of the cladding layer. An effective 109.9 P temperature of the glass article is at most about 750° C.
Abstract:
A method of strengthening an alkali aluminoborosilicate glass. A compressive layer extending from a surface of the glass to a depth of layer is formed by exchanging larger metal cations for smaller metal cations present in the glass. In a second step, metal cations in the glass are exchanged for larger metal cations to a second depth in the glass that is less than the depth of layer and increase the compressive stress of the compressive layer. Formation of the compressive layer and replacement of cations with larger cations can be achieved by a two-step ion exchange process. An alkali aluminoborosilicate glass having a compressive layer and a crack indentation threshold of at least 3000 gf is also provided.
Abstract:
A method of making a glass sheet includes treating a refractory block material comprising at least one multivalent component with a vehicle comprising at least one redox altering component or precursor. The method also includes flowing molten glass over the refractory block material, wherein the treatment of the refractory block material with the vehicle comprising at least one redox altering component or precursor reduces the amount of oxygen production resulting from interaction between the at least one multivalent component and the molten glass.
Abstract:
Disclosed herein are methods for ion exchanging, e.g., chemically strengthening, a substrate, the methods comprising applying a first electrode to at least one first region on a first surface of the substrate and applying a second electrode to at least one second region on an opposing second surface of the substrate, wherein the substrate comprises mobile ions, e.g., metal ions chosen from alkali metal ions, alkaline earth metal ions, transition metal ions, and combinations thereof; applying voltage between the first and second electrodes sufficient to cause the mobile ions to migrate away from the at least one first region on the first surface; and treating the substrate by ion exchange, e.g., chemically strengthening the substrate. Also disclosed herein are substrates, e.g., glass, glass-ceramic, and ceramic substrates, produced by the methods disclosed herein.
Abstract:
A group of glass compositions in the Li2O—Al2O3—SiO2—B2O3 family that can be chemically strengthened in single or multiple ion exchange baths containing at least one of NaNO3 and KNO3 for a short time (2-4 hours) to develop a deep depth of layer (DOL). In some instances, the DOL is at least 70 μm; in others, at least about 100 μm. The ion exchanged glasses have a high damage resistance (indentation fracture toughness ranging form greater than 10 kgf to greater than 50 kgf) that is better than or at least comparable to that of sodium aluminosilicate glasses.
Abstract:
A scratch resistant alkali aluminoborosilicate glass. The glass is chemically strengthened and has a surface layer that is rich in silica with respect to the remainder of the glass article. The chemically strengthened glass is then treated with an aqueous solution of a mineral acid other than hydrofluoric acid, such as, for example, HCl, HNO3, H2SO4, or the like, to selective leach elements from the glass and leave behind a silica-rich surface layer. The silica-rich surface layer improves the Knoop scratch threshold of the ion exchanged glass compared to ion exchanged glass that are not treated with the acid solution as well as the post-scratch retained strength of the glass.
Abstract:
A method of making a strengthened, antimicrobial glass article that includes: providing a glass article comprising a primary surface and ion-exchangeable alkali metal ions; providing a first molten salt bath comprising 60 to 95 wt. % alkali metal ions that are larger in size than the ion-exchangeable alkali metal ions; providing a second molten salt bath comprising alkali metal ions and about 1 to 10 wt. % silver ions; submersing the glass article in the first bath to exchange a portion of the ion-exchangeable alkali metal ions with a portion of the ions in the first bath to define a compressive stress layer extending from the primary surface to a DOL; and submersing the glass article in the second bath to exchange alkali metal ions in the compressive stress layer with a portion of the silver ions in the second bath to impart an antimicrobial property at the primary surface.
Abstract:
A fining agent for reducing the concentration of seeds or bubbles in a silicate glass. The fining agent includes at least one inorganic compound, such as a hydrate or a hydroxide that acts as a source of water. In one embodiment, the fining agent further includes at least one multivalent metal oxide and, optionally, an oxidizer. A fusion formable and ion exchangeable silicate glass having a seed concentration of less than about 1 seed/cm3 is also provided. Methods of reducing the seed concentration of a silicate glass, and a method of making a silicate glass having a seed concentration of less than about 1 seed/cm3 are also described.
Abstract:
Disclosed herein are glass-ceramics having crystalline phases including β-spodumene ss and either (i) pseudobrookite or (ii) vanadium or vanadium containing compounds so as to be colored and opaque glass-ceramics having coordinates, determined from total reflectance—specular included—measurements, in the CIELAB color space of the following ranges: L*=from about 20 to about 45; a*=from about −2 to about +2; and b*=from about −12 to about +1. Such CIELAB color space coordinates can be substantially uniform throughout the glass-ceramics. In each of the proceeding, β-quartz ss can be substantially absent from the crystalline phases. If present, β-quartz ss can be less than about 20 wt % or, alternatively, less than about 15 wt % of the crystalline phases. Also Further crystalline phases might include spinel ss (e.g., hercynite and/or gahnite-hercynite ss), rutile, magnesium zinc phosphate, or spinel ss (e.g., hercynite and/or gahnite-hercynite ss) and rutile.