摘要:
An opening structure includes a semiconductor substrate, at least one dielectric layer disposed on the semiconductor substrate, wherein the dielectric layer has a plurality of openings exposing the semiconductor substrate, and each of the openings has a sidewall, a dielectric thin film covering at least a portion of the sidewall of each of the openings, and a metal layer filled in the openings.
摘要:
An opening structure is disclosed. The opening structure includes: a semiconductor substrate; at least one dielectric layer disposed on the semiconductor substrate, wherein the dielectric layer has a plurality of openings exposing the semiconductor substrate, and each of the openings has a sidewall; a dielectric thin film covering at least a portion of the sidewall of each of the openings; an etch stop layer disposed between the semiconductor substrate and the dielectric layer and extending partially into the openings to isolate the dielectric thin film from the semiconductor substrate; and a metal layer filled in the openings.
摘要:
A method of descumming a patterned photoresist is provided. First a material layer to be etched is provided. The material layer is covered by a patterned photoresist. Then a descum process is preformed to descum the edge of the patterned photoresist by nitrogen. Finally, the descummed patterned photoresist is used as a mask for etching the material layer.
摘要:
A patterning method is provided. In the patterning method, a film is formed on a substrate and a pre-layer information is measured. Next, an etching process is performed to etch the film. The etching process includes a main etching step, an etching endpoint detection step, an extension etching step and an over etching step. An extension etching time for performing the extension etching step is set within 10 seconds based on a predetermined correlation between an extension etching time and the pre-layer information, so as to achieve a required film profile.
摘要:
A method of forming openings is disclosed. A substrate is first provided, and the tri-layer structure is formed on the substrate. The tri-layer structure includes a bottom photoresist layer, a silicon-containing layer and a top photoresist layer form bottom to top. Subsequently, the top photoresist layer is patterned, and the silicon-containing layer is etched by utilizing the top photoresist layer as an etching mask to partially expose the bottom photoresist layer. Next, the partially exposed bottom photoresist layer is etched through two etching steps in turn by utilizing the patterned silicon-containing layer as an etching mask. The first etching step includes an oxygen gas and at least one non-carbon-containing halogen-containing gas, while the second etching step includes at least one halogen-containing gas. The substrate is thereafter etched by utilizing the patterned bottom photoresist layer as an etching mask to form at least an opening in the substrate.
摘要:
A method of forming openings is disclosed. A substrate is first provided, and the tri-layer structure is formed on the substrate. The tri-layer structure includes a bottom photoresist layer, a silicon-containing layer and a top photoresist layer form bottom to top. Subsequently, the top photoresist layer is patterned, and the silicon-containing layer is etched by utilizing the top photoresist layer as an etching mask to partially expose the bottom photoresist layer. Next, the partially exposed bottom photoresist layer is etched through two etching steps in turn by utilizing the patterned silicon-containing layer as an etching mask. The first etching step includes an oxygen gas and at least one non-carbon-containing halogen-containing gas, while the second etching step includes at least one halogen-containing gas. The substrate is thereafter etched by utilizing the patterned bottom photoresist layer as an etching mask to form at least an opening in the substrate.
摘要:
A method for forming a contact hole. The method comprises steps of performing a substrate having at least a dielectric layer formed thereon and then forming a patterned mask layer on the dielectric layer, wherein the patterned mask layer exposes a portion of the dielectric layer. The dielectric layer is patterned to form a contact hole by using the patterned mask layer as a mask, wherein an aspect ratio of the contact hole is larger than 4. The patterned mask layer is removed and a wet cleaning process is performed. A plasma treatment is performed on the substrate in a first tool system, wherein a gas source for the plasma treatment is a hydrogen-nitrogen-containing gas. A vacuum system of the first tool system is broken and then the substrate is transferred into a second tool system. An argon plasma treatment is performed on the substrate in the second tool system.
摘要:
A semiconductor substrate having an etch stop layer and at least a dielectric layer disposed from bottom to top is provided. The dielectric layer and the etching stop layer is then patterned to form a plurality of openings exposing the semiconductor substrate. A dielectric thin film is subsequently formed to cover the dielectric layer, the sidewalls of the openings, and the semiconductor substrate. The dielectric thin film disposed on the dielectric layer and the semiconductor substrate is then removed while the dielectric thin film disposed on the sidewalls remains.
摘要:
An etching method is described, including a first etching step that uses a first etching gas including a first fluorinated hydrocarbon compound, and a second etching step that uses a second etching gas including a second fluorinated hydrocarbon compound. The hydrogen content in the first fluorinated hydrocarbon compound is lower than that in the second fluorinated hydrocarbon compound, such that the after-etching-inspection (AEI) critical dimension is smaller than the after-development-inspection (ADI) critical dimension.
摘要:
A stacked structure for patterning a material layer to form an opening pattern with a predetermined opening width in the layer is provided. The stacked structure includes an underlayer, a silicon rich organic layer, and a photoresist layer. The underlayer is on the material layer. The silicon rich organic layer is between the underlayer and the photoresist layer. The thickness of the photoresist layer is smaller than that of the underlayer and larger than two times of the thickness of the silicon rich organic layer. The thickness of the underlayer is smaller than three times of the predetermined opening width.