Abstract:
A wedge for use in a generator rotor includes a wedge body extending for an axial length and having a generally triangular cross-section, a first side of the wedge body extending for the axial length of the wedge body, a second side of the wedge body extending for the axial length of the wedge body and having a generally flat surface, a third side of the wedge body extending for the axial length of the wedge body and having a generally flat surface, a first arm extending circumferentially away from the wedge body at an interface between the first side and the second side and extending axially along the wedge body, and a second arm extending circumferentially away from the wedge body at an interface between the first side and the third side and extending axially along the wedge body.
Abstract:
An electrical power generation system includes a flux switching machine (FSM) including an FSM rotor operatively connected to an FSM stator, the FSM rotor operatively connected to a shaft, wherein the FSM includes an electrical input/output (i/o) in electrical communication with the FSM stator, and a permanent magnet machine (PMM) including a PMM rotor operatively connected to a PMM stator, the PMM rotor operatively connected to a the shaft, wherein the PMM is electrically connected to the FSM.
Abstract:
A rectifier assembly and method are provided. The rectifier assembly includes an annular bus bar including an electrically conductive material, and an insulator ring receiving the annular bus bar. The insulator ring defines radially-extending resistor pockets and diode pockets therein. The rectifier assembly also includes resistors disposed in the resistor pockets and electrically connected with the annular bus bar, and diodes disposed in the diode pockets and electrically connected with the annular bus bar. The rectifier assembly also includes an outer housing receiving the annular bus bar and the insulator ring, such that the insulator ring is positioned radially between the annular bus bar and the outer housing.