摘要:
A neural stimulation system controls the delivery of neural stimulation using a respiratory signal as a therapy feedback input. The respiratory signal is used to increase the effectiveness of the neural stimulation, such as vagal nerve stimulation, while decreasing potentially adverse side effects in respiratory functions. In one embodiment, the neural stimulation system synchronizes the delivery of the neural stimulation pulses to the respiratory cycles using a respiratory fiducial point in the respiratory signal and a delay interval. In another embodiment, the neural stimulation system detects a respiratory disorder and, in response, adjusts the delivery of the neural stimulation pulses and/or delivers a respiratory therapy treating the detected respiratory disorder.
摘要:
Various system embodiments comprise a neural stimulation delivery system adapted to deliver a neural stimulation signal for use in delivering a neural stimulation therapy, a side effect detector, and a controller. The controller is adapted to control the neural stimulation delivery system, receive a signal indicative of detected side effect, determine whether the detected side enact is attributable to delivered neural stimulation therapy, and automatically titrate the neural stimulation therapy to abate the side effect. In various embodiments, the side effect detector includes a cough detector. In various embodiments, the controller is adapted to independently adjusting at least one stimulation parameter for at least one phase in the biphasic waveform as part of a process to titrate the neural stimulation therapy. Other aspects and embodiments are provided herein.
摘要:
A method and apparatus for delivering therapy to treat ventricular tachyarrhythmias is described. In one embodiment, neural stimulation, anti-tachycardia pacing, and shock therapy are employed in a progressive sequence upon detection of a ventricular tachycardia.
摘要:
A neural stimulation system controls the delivery of neural stimulation using a respiratory signal as a therapy feedback input. The respiratory signal is used to increase the effectiveness of the neural stimulation, such as vagal nerve stimulation, while decreasing potentially adverse side effects in respiratory functions. In one embodiment, the neural stimulation system synchronizes the delivery of the neural stimulation pulses to the respiratory cycles using a respiratory fiducial point in the respiratory signal and a delay interval. In another embodiment, the neural stimulation system detects a respiratory disorder and, in response, adjusts the delivery of the neural stimulation pulses and/or delivers a respiratory therapy treating the detected respiratory disorder.
摘要:
Various system embodiments comprise a neural stimulation delivery system adapted to deliver a neural stimulation signal for use in delivering a neural stimulation therapy, a side effect detector, and a controller. The controller is adapted to control the neural stimulation delivery system, receive a signal indicative of detected side effect, determine whether the detected side effect is attributable to delivered neural stimulation therapy, and automatically titrate the neural stimulation therapy to abate the side effect. In various embodiments, the side effect detector includes a cough detector. In various embodiments, the controller is adapted to independently adjusting at least one stimulation parameter for at least one phase in the biphasic waveform as part of a process to titrate the neural stimulation therapy. Other aspects and embodiments are provided herein.
摘要:
A system, device and method for neural control of respiration are provided. One aspect of this disclosure relates to an implantable medical device for sensing and controlling respiration during incidence of central respiratory diseases. According to various embodiments, the device includes a sensing circuit to receive sensed signals representative of an incidence of a central respiratory disease. The device also includes a neural stimulator adapted to generate neural stimulation signals, and a controller to communicate with the sensing circuit and to control the neural stimulator to stimulate a desired neural target in response to the detection of the incidence of a central respiratory disease. In an embodiment, the device includes a plurality of sensors which are adapted to monitor physiological parameters to detect the incidence of a central respiratory disease and to send signals to the sensing circuit. Other aspects and embodiments are provided herein.
摘要:
Methods and apparatus combine patient measurement data with demographic or physiological data of the patient to determine an output that can be used to diagnose and treat the patient. A customized output can be determined based the demographics of the patient, physiological data of the patient, and data of a population of patients. In another aspect, patient measurement data is used to predict an impending cardiac event, such as acute decompensated heart failure. At least one personalized value is determined for the patient, and a patient event prediction output is generated based at least in part on the personalized value and the measurement data. For example, bioimpedance data may be used to establish a baseline impedance specific to the patient, and the patient event prediction output generated based in part on the relationship of ongoing impedance measurements to the baseline impedance. Multivariate prediction models may enhance prediction accuracy.
摘要:
An apparatus includes a flexible lead body extending from a proximal end to a distal end, an expandable electrode coupled proximate the distal end, the expandable electrode having an expanded diameter dimensioned to abut a wall of a pulmonary artery, and an implantable pulse generator electrically coupled to the expandable electrode. The expandable electrode includes a plurality of electrode zones. The implantable pulse generator is adapted to deliver a baroreflex stimulation signal to a baroreceptor in the pulmonary artery via the electrode.
摘要:
This document discusses, among other things, apparatus, systems, and methods for transvascularly stimulation of a nerve or nerve trunk. In an example, an apparatus is configured to transvascularly stimulate a nerve trunk through a blood vessel. The apparatus includes an expandable electrode that is chronically implantable in a blood vessel proximate a nerve trunk. The expandable electrode is configured to abut a predetermined surface area of the vessel wall along a predetermined length of the vessel. An electrical lead is coupled to the expandable electrode. An implantable pulse generator is coupled to the lead and configured to deliver an electrical stimulation signal to the electrode through the lead. In an example method, an electrical signal is delivered from an implanted medical device to an electrode chronically implanted in a blood vessel proximate a nerve trunk to transvascularly deliver neural stimulation from the electrode to the nerve trunk.
摘要:
Various aspects of the present subject matter relate to a method. According to various method embodiments, cardiac activity is detected, and neural stimulation is synchronized with a reference event in the detected cardiac activity. Neural stimulation is titrated based on a detected response to the neural stimulation. Other aspects and embodiments are provided herein.