Abstract:
An apparatus and method for performing addition of signed packed data values using rotation and halving. For example, one embodiment of a processor comprises: a decoder to decode an instruction to generate a decoded instruction, the instruction including an opcode, an immediate, and operands identifying a plurality of packed data source registers and a packed data destination register a first source register to store a first plurality of packed signed words; a second source register to store a second plurality of packed signed words; execution circuitry to execute the decoded instruction, the execution circuitry comprising: adder circuitry to add each packed signed word from the first source register with a selected packed signed word from the second source register to generate a plurality of signed word results, the adder circuitry to select each packed signed word from the second source register in accordance with a rotation value in the immediate of the instruction, the rotation value to indicate an amount of rotation to be applied to the packed signed words in the second source register prior to the adder circuitry performing the adding; and a destination register to store the plurality of signed word results in specified data element locations of the destination register.
Abstract:
An embodiment of the invention is a processor including execution circuitry to calculate, in response to a decoded instruction, a result of a complex multiplication of a first complex number and a second complex number. The calculation includes a first operation to calculate a first term of a real component of the result and a first term of the imaginary component of the result. The calculation also includes a second operation to calculate a second term of the real component of the result and a second term of the imaginary component of the result. The processor also includes a decoder, a first source register, and a second source register. The decoder is to decode an instruction to generate the decoded instruction. The first source register is to provide the first complex number and the second source register is to provide the second complex number.
Abstract:
An apparatus and method for performing dual concurrent multiplications of packed data elements. For example one embodiment of a processor comprises: a decoder to decode a first instruction to generate a decoded instruction; a first source register to store a first plurality of packed data elements; a second source register to store a second plurality of packed data elements; execution circuitry to execute the decoded instruction, the execution circuitry comprising: multiplier circuitry to perform concurrent dual multiplications of a first packed data element from the first source register with a second packed data element from the second source register and a third packed data element from the first source register with a fourth packed data element from the second source register to generate first and second products, respectively, wherein the first and third packed data elements have a width twice as large as a width of the second and fourth packed data elements; the multiplier circuitry to select the first and third packed data elements from the first source register and the second and fourth packed data elements from the second source register in accordance with the immediate to generate the first and second products.
Abstract:
Embodiments of instructions and methods of execution of said instructions and resources to execute said instructions are detailed. For example, in an embodiment, a processor comprising: decode circuitry to decode an instruction having fields for an opcode, a packed data source operand identifier, and a packed data destination operand identifier; and execution circuitry to execute the decoded instruction to convert a data element from a least significant packed data element position of the identified packed data source operand from a fixed-point representation to a floating point representation, store the floating point representation into a 32-bit least significant packed data element position of the identified packed data destination operand, and zero all remaining packed data elements of the identified packed data destination operand is described.
Abstract:
Embodiments detailed herein relate to systems and methods to store a tile register pair to memory. In one example, a processor includes: decode circuitry to decode a store matrix pair instruction having fields for an opcode and source and destination identifiers to identify source and destination matrices, respectively, each matrix having a PAIR parameter equal to TRUE; and execution circuitry to execute the decoded store matrix pair instruction to store every element of left and right tiles of the identified source matrix to corresponding element positions of left and right tiles of the identified destination matrix, respectively, wherein the executing stores a chunk of C elements of one row of the identified source matrix at a time.
Abstract:
Embodiments detailed herein relate to systems and methods to load a tile register pair. In one example, a processor includes: decode circuitry to decode a load matrix pair instruction having fields for an opcode and source and destination identifiers to identify source and destination matrices, respectively, each matrix having a PAIR parameter equal to TRUE; and execution circuitry to execute the decoded load matrix pair instruction to load every element of left and right tiles of the identified destination matrix from corresponding element positions of left and right tiles of the identified source matrix, respectively, wherein the executing operates on one row of the identified destination matrix at a time, starting with the first row.
Abstract:
Disclosed embodiments relate to computing dot products of nibbles in tile operands. In one example, a processor includes decode circuitry to decode a tile dot product instruction having fields for an opcode, a destination identifier to identify a M by N destination matrix, a first source identifier to identify a M by K first source matrix, and a second source identifier to identify a K by N second source matrix, each of the matrices containing doubleword elements, and execution circuitry to execute the decoded instruction to perform a flow K times for each element (M,N) of the identified destination matrix to generate eight products by multiplying each nibble of a doubleword element (M,K) of the identified first source matrix by a corresponding nibble of a doubleword element (K,N) of the identified second source matrix, and to accumulate and saturate the eight products with previous contents of the doubleword element (M,N).
Abstract:
A method is described that includes reading a first read mask from a first register. The method also includes reading a first vector operand from a second register or memory location. The method also includes applying the read mask against the first vector operand to produce a set of elements for operation. The method also includes performing an operation of the set elements. The method also includes creating an output vector by producing multiple instances of the operation's result. The method also includes reading a first write mask from a third register, the first write mask being different than the first read mask. The method also includes applying the write mask against the output vector to create a resultant vector. The method also includes writing the resultant vector to a destination register.
Abstract:
An example processor includes a register and a fused multiply-add (FMA) low functional unit. The register stores first, second, and third floating point (FP) values. The FMA low functional unit receives a request to perform an FMA low operation: multiplies the first FP value with the second FP value to obtain a first product value; adds the first product with the third FP value to generate a first result value; rounds the first result to generate a first FMA value; multiplies the first FP value with the second FP value to obtain a second product value; adds the second product value with the third FP value to generate a second result value; and subtracts the FMA value from the second result value to obtain a third result value, which can then be normalized and rounded (FMA low result) and sent the FMA low result to an application.
Abstract:
A processor includes an execution unit, a fault mask coupled to the execution unit, and a suppress mask coupled to the execution unit. The fault mask is to store a first plurality of bit values to indicate which elements of a multi-element vector have an associated fault generated in response to execution of an instruction on the element in the execution unit. The suppress mask is to store a second plurality of bit values to indicate which of the elements are to have an associated fault suppressed. The processor also includes counter logic to increment a counter in response to an indication of a first fault associated with the first element and received from the fault mask, and an indication of a first suppression associated with the first element and received from the suppress mask. Other embodiments are described as claimed.