Abstract:
The claimed subject matter relates to providing uplink data rate option information in an uplink traffic channel segment. A wireless terminal may indicate a data rate option being used for the segment via an energy pattern applied to the tone-symbols of the segment. To indicate a first data rate option, additional energy may be applied to a first set of tone-symbols of the segment. To indicate a second rate option, additional energy may be applied to a second set of tone-symbols of the segment, the second set being different from the first set. According to some aspects, each implemented energy pattern may be represented by a pattern, which has a slope (e.g., in a logical, pre-hopped representation of the channel segment), where some of the patterns have positive slope and some of the patterns have negative slope. The use of positive and negative slopes facilitates the representation of more data rate options than would be possible if only one type of slope (positive or negative) for the energy pattern were utilized.
Abstract:
Downlink traffic channel data rate options and methods of indicating to a wireless terminal a utilized downlink data rate option are described. The downlink traffic channel rate option for a segment is conveyed using an assignment signal and/or a block in the downlink traffic channel segment which is not used for user data. Downlink segment assignment signals in some implementations allocate fewer bits for rate option indication than are required to uniquely identify each option. In some implementations low rate options, e.g., using QPSK, are uniquely identified via assignment signals. Higher rate options, e.g., using QAM16 modulation, are conveyed via the distinct information block in the downlink traffic segment using a first coding/modulation method. Still higher rate options, e.g., using QAM16, QAM64, or QAM256, are conveyed via the information block in the segment using a second coding/modulation method which is applied to the rate option information.
Abstract:
Special DC tone treatment in a wireless communications system, e.g., an OFDM system, is discussed. In the downlink, a wireless terminal receiver introduces self-interference at the DC tone from the RF/baseband conversion. A base station every so often does not transmit on the downlink DC tone while continuing to transmit on other downlink tones. Wireless terminals measure received signal on the downlink DC tone during the time of suspended DC tone transmission, estimate self-interference and apply a correction to other received downlink DC tones. In the uplink DC tone interference is a composite of the assigned wireless terminal transmitter's baseband/RF conversion self-interference and air link noise. During one symbol interval of an N symbol interval dwell, the uplink DC tone is reserved for a special modulation symbol, which is a predetermined function of the other N-1 modulation symbols. At the base station, its receiver receives a set of modulation symbols conveyed by the uplink DC tone for a dwell, calculates the average DC component and corrects the received N-1 modulation symbols.
Abstract:
An image segmentational recognition method in industrial radiational imaging, comprising the steps of: pre-processing an original image to climate noises; log-transforming, to obtain a linear attenuation coefficient image; edge detecting; edge tracking, to track the points whose edge values are close to each other to obtain edge segments; edge connecting, to connect edge segments; edge connecting, to connect edge segments whose average edge values are close to each other; edge closing; region filling; and region displaying. In comparison with existing arts, the present invention can separate effectively the overlapped objects in an image, raise the efficiency of image inspection, and find out concealed contraband goods more easily.
Abstract:
A stream of modulation symbols from a zero symbol rate (ZSR) coding/modulation module and a stream of modulation symbols from another type of coding/modulation module are input into an interweaver module. The interweaver module mixes the two input streams when assigning modulation symbols to be communicated in a segment. If a ZSR modulation symbol is non-zero, the ZSR modulation symbol is allocated a transmission position. If the ZSR modulation symbol is a zero modulation symbol, the modulation symbol from the other coding/modulation module is allocated the transmission position. The non-zero modulation symbols from the ZSR module are higher in power than the non-zero modulation symbols from the other module, thus facilitating detection and recovery.
Abstract:
A base station selects and assigns uplink segments to specific wireless terminals. The base station estimates potential system interference levels, selects, assigns, and transmits a maximum uplink rate indicator value to a wireless terminal indicating the maximum uplink data rate that the wireless terminal is permitted to use. The wireless terminal receives the maximum data rate indicator and selects an uplink data rate to use which is less than or equal to the maximum data rate indicator level. The selection includes consideration of data amounts, data importance, communications channel quality, changes affecting the channel and/or power information. The wireless terminal encodes information indicative of the selected used rate with the user data/information to be transmitted by placing additional energy on a subset of the uplink signals. The base station receives the uplink signals including user data/information and data rate. The base station extracts the data rate used and utilizes the data rate to demodulate and decode the uplink user data/information.
Abstract:
A flexible and relatively hardware efficient LDPC encoder is described. The encoder can be implemented with a level of parallelism which is less than the full parallelism of the code structure used to control the encoding process. Each command of a relatively simple microcode used to describe the code structure can be stored and executed multiple times to complete the encoding of a codeword. Different codeword lengths can be supported using the same set of microcode instructions but with the code being implemented a different number of times depending on the lifting factor selected to be used. The LDPC encoder can switch between encoding codewords of different lengths, without the need to change the stored code description information, by simply changing a code lifting factor used to control the encoding processes. When coding codewords shorter than the maximum supported codeword length some block storage locations and/or registers may go unused.
Abstract:
Improvements in connector headers of implantable medical devices (IMDS) for making electrical and mechanical connections with a connector element of a proximal connector assembly of an electrical medical lead and components thereof are disclosed. A connector block disposed within a header body of the connector header has a threaded bore aligned with a header grommet aperture and a connector block bore aligned with a header connector bore. A penetrable grommet is disposed within the header grommet aperture, and a setscrew is threaded into the threaded bore having a setscrew socket disposed to be engaged by the tool inserted through the penetrable grommet within the header grommet aperture to enable rotation of the setscrew within the threaded bore to tighten the setscrew against or to loosen the setscrew from a lead connector element received in the header connector bore.
Abstract:
The present invention provides magnetic eyeglasses attachments comprising decorative elements and/or functional elements including lenses. Also provided are methods of producing the magnetic eyeglasses attachments.
Abstract:
In the field of mobile communications, embodiments of the present invention disclose a service control method and apparatus. A user equipment has established a circuit switched bearer, and the user equipment initiates a session with a third party. The method includes: receiving, by a service centralization and continuity application server SCC AS, early session media information and sending the early session media information to a circuit switched network in a form of regular session media, so that the circuit switched bearer is used for an early session; and receiving, by the SCC AS, an off-hook signal of the third party and sending regular session media information of the third party to the circuit switched network, so that the circuit switched bearer is used for a regular session.