Abstract:
A capacitance-type touch panel, allowing disturbance noise and touch detection time to be reduced and having a simple configuration, is provided. The capacitance-type touch panel including: a plurality of drive electrodes each having a strip shape; a drive control circuit performing control such that a drive signal for touch detection is selectively applied to the drive electrodes; a plurality of touch detection electrodes arranged to intersect with the drive electrodes in such a manner that capacitance is formed in each intersecting part, and each outputting a detection signal in synchronization with the drive signal; and a detection circuit detecting an external proximity object based on the detection signal. The drive control circuit controls application of the drive signal in such a manner that the detection signal is a polarity-alternating signal including a positive-negative asymmetrical signal component which is due to presence of the external proximity object.
Abstract:
A display apparatus includes: a display face; a display function layer adapted to vary display on the display face in response to an inputted image signal; a plurality of driving electrodes disposed separately in one direction; a detection scanning control section configured to apply a detection driving voltage to some of the plural driving electrodes and carry out detection driving scanning while shifting an application object of the detection driving voltage in the one direction on the display face and then control the detection driving scanning such that jump shift of carrying out shift with a pitch of twice or more times a driving electrode pitch is included; and a plurality of sensor lines disposed separately in a direction different from the one direction and responding to touch or proximity of a detection object with or to the display face to exhibit an electric variation.
Abstract:
A display device includes: an image display panel including a plurality of pixels each including a first sub-pixel, a second sub-pixel, and a third sub-pixel that display a first color to a third color; and a signal processing unit. The signal processing unit stores an expanded color space, acquires an expansion coefficient for expanding a color displayed by the image display panel to a color that can be extended in the expanded color space, obtains output signals of the first sub-pixel to the third sub-pixel based on at least input signals of the first sub-pixel to the third sub-pixel and the expansion coefficient, and outputs the output signals to the first sub-pixel to the third sub-pixel. The expanded color space is a color space that can extend a color the brightness of which is higher than brightness in a standard color space.
Abstract:
An image display device comprises an image display unit including first pixels and second pixels arranged in a staggered manner, the first pixels including sub-pixels arranged in a matrix in a first color gamut and second pixels including sub-pixels arranged in a matrix in a second color gamut different from the first color gamut; and a processing unit that determines an output of the sub-pixels corresponding to an input image signal. When sub-pixels including same color component are continuously lit in a straight line and there is a difference between outputs from adjacent sub-pixels including the same color component, the processing unit determines the output of the sub-pixels in the first pixel based on the first component after an adjustment component is eliminated, and determines the output of the sub-pixels included in the second pixel based on the second component and the adjustment component.
Abstract:
An image display device includes an image display unit including first pixels including sub-pixels of three or more colors in a first color gamut, and second pixels including sub-pixels of three or more colors in a second color gamut different from the first color gamut; a processing unit that determines an output of the sub-pixels of the first pixel based on a combined component of a first component and an out-of-color gamut component, and determines an output of the sub-pixels of the second pixel based on a third component by eliminating the out-of-color gamut component from a second component; and a determination unit that determines whether the input image signal corresponds to an edge of an image. When the input image signal corresponds to the edge of the image, the processing unit causes the out-of-color gamut component not to be reflected in an output of the first pixel.
Abstract:
A display device includes: a display functional layer that can change display for each pixel in accordance with an application voltage; a plurality of driving electrodes separately disposed in one direction; a plurality of pixel signal lines to which pixel signals used for applying the application voltage to the display functional layer in accordance with an electric potential difference from the display reference electric potential are applied; a plurality of detection electrodes that are separately disposed in a direction other than the one direction, are coupled with the driving electrodes as electrostatic capacitance, generate detection electric potentials in response to the detection driving signal, and change the detection electric potential in accordance with approach of a detection target object; and a pixel signal control unit that controls the pixel signals so as to include pixel signals having different polarities during the display period.
Abstract:
The display device includes an image display unit including a plurality of pixels each including first to third sub-pixels and a fourth sub-pixel for displaying an additional color component according to an amount of lighting of a self-emitting element; a conversion processing unit that receives a first input signal including first color information for display at a predetermined pixel, where the first input signal is obtained based on an input video signal, the conversion processing unit being configured to outputs a second input signal including second color information with a saturation reduced by an amount of saturation attenuation defined such that saturation variation falls within a predetermined range according to the first color information; and a fourth sub-pixel signal processing unit that outputs, to the image display unit, a third input signal including third color information with red, green, blue components and the additional color component that are converted based on the second color information.
Abstract:
According to an aspect, a display device includes a display panel and a plurality of memory circuits. The display panel includes a plurality of pixels each including a plurality of sub-pixel electrodes arranged in a matrix, and the display panel is divided into at least a first region and a second region in which at least one of the predetermined maximum number of displayable gradations and maximum resolution is different from that of the first region. The memory circuits are located under the sub-pixel electrodes and each of the memory circuits stores therein pixel potential corresponding to gradation to be applied to at least one of the sub-pixel electrodes. The arrangement of the sub-pixel electrodes is the same in the first region and the second region of the display panel.
Abstract:
A detection device includes: a sensor having a detection region; electrodes arrayed in a first direction and a second direction in the detection region; a detection circuit configured to generate detection values of the electrodes based on detection signals from the electrodes; and a processing circuit configured to generate spatial coordinates indicating a position of an object to be detected on or above the detection region. The spatial coordinates include first data indicating a position in the first direction, second data indicating a position in the second direction, and third data indicating a position in a third direction. The processing circuit acquires the first to third data based on the detection values and generates the spatial coordinates when at least one of the detection values is equal to or larger than a first threshold and smaller than a second threshold larger than the first threshold.
Abstract:
According to an aspect, a display device includes: a display region in which a plurality of pixels are arrayed in a row direction and a column direction; a plurality of gate lines extending in the row direction and coupled to the pixels; a plurality of signal lines extending in the column direction and coupled to the pixels; a plurality of pixel electrodes provided in the pixels; a plurality of first electrodes facing the pixel electrodes; a plurality of auxiliary wiring lines coupled to the respective first electrodes; a second electrode provided in the same layer as the auxiliary wiring lines and overlapping with the signal lines; and a detection circuit configured to detect force applied to the display region based on at least first capacitance generated between the second electrode and the signal lines.