摘要:
A method is proposed for controlling an automatic transmission driven by a prime mover in which a shift from a first transmission ratio to a second transmission ratio occurs in the form of a pull upshift or push downshift or a pull downshift or push upshift by a first clutch opening and a second clutch closing and an electronic transmission control device controls, via electromagnetic valves, the pressure curve of the first and of the second clutch during the shifting operation. The shifting operation is divided into various shifting phases, an engine intervention taking place in the load-transfer (LÜ) of the gradient-setting phase (GE), the sliding phase (GL), the gradient-reduction phase (GA) and the closing phase (S), an engine torque and/or a characteristic value that determines the engine torque being transferred from the transmission control device to an engine control device of the prime mover.
摘要:
A method and device for a coupling (2) in a motor vehicle, transmission (1) are proposed in which the coupling is controlled and regulated during three operational states via a first regulating circuit (3). The regulated quantity corresponds to the actual value of a differential rotational speed of the coupling (2). The first state corresponds to a starting operation, the second state to the operation with constant ratio and the third state exists when a gear shift under load or a change of ratio from a first to a second ratio step of an automatic transmission (1) is initiated.
摘要:
A gear control for reduces the thermal stress on switching components (2, 3, 4, 5, 6) of a reversing gear (1) for machines having an input shaft (8) and an output shaft (15) and at least one directional switch for forward motion (2) and one for reverse motion (3) and a downstream load-switchable switching set (4) with several switching components (5, 6) allocated to a gear. Here the switching components (2, 3, 5, 6) can be electrically and/or hydraulically controlled by a regulating and control device (12) in such a way that, during a switching operation, in addition to one of the directional switching components (2, 3) corresponding to the switching operation, at least one other switching components (5, 6) of the downstream switching set (4) lying in the power flow and fully engaged at the start of a reversal is set to a slip state under frictional load. The frictional load is thus distributed between the directional switching components (2, 3) and the other slipping switching components (5, 6).