Abstract:
An image data processor for generating driving image data for operating an image display device, including: an image memory; a write-in control section for sequentially writing-in plural frame image data having a predetermined frame rate to the image memory; a read-out control section for reading-out the frame image data 1 times (1 is an integer of 2 or more) at a rate 1 times the frame rate with every frame image data written into the image memory; and a driving image data generating section for generating the driving image data corresponding to each read-out image data sequentially read out of the image memory.
Abstract:
A discharge lamp controlling apparatus includes a detector for detecting a discharge condition of a discharge lamp; a frequency changing unit for gradually changing a frequency of a voltage to be applied to the discharge lamp until the discharge condition reaches a predetermined lighting condition; and a voltage controller for controlling the voltage to be applied to the discharge lamp on the basis of the frequency changed by the frequency changing unit.
Abstract:
Specific image quality adjustment of an image is performed according to a setting made by a user, and contrast compensation is performed such that a brightness is kept unchanged at the center of a specific color region larger than a predetermined size, regardless of the setting of the image quality adjustment. The image quality adjustment is performed by selecting one of a plurality of filters with different frequency characteristics according to the setting of the image quality adjustment, and then performing filter processing on the image by using the selected filter. The contrast compensation is performed upon the image that has undergone the filter processing, by using a contrast compensation value related to the selected filter.
Abstract:
An actuator mechanism having a different magnet polarity arrangement than the conventional mechanisms is provided. The actuator mechanism 100 has a magnet unit 210 that includes magnets 30 and an electromagnetic coil unit 110 that includes an electromagnetic coil. the relative positions of the magnet unit 210 and the magnetic coil unit 110 can change. The magnet unit 210 includes a yoke member 20 and two or more magnets 30. The two magnets 30 are pulled toward the yoke member 20 in the state where identical poles face each other across the yoke member 20.
Abstract:
A PWM control system, comprising PWM fundamental wave generation means for forming a PWM fundamental wave by dividing a fundamental frequency signal; PWM cycle setting means for setting a PWM cycle on the basis of the PWM fundamental wave; duty ratio formation means for forming a duty ratio (N/M:N≦M, where M is the maximum number of clocks) in the PWM cycle; and PWM control signal output means for outputting a PWM control signal with the duty ratio to a load drive circuit.
Abstract:
A discharge lamp controlling apparatus includes a detector for detecting a discharge condition of a discharge lamp; a frequency changing unit for gradually changing a frequency of a voltage to be applied to the discharge lamp until the discharge condition reaches a predetermined lighting condition; and a voltage controller for controlling the voltage to be applied to the discharge lamp on the basis of the frequency changed by the frequency changing unit.
Abstract:
An optical diaphragm for adjusting an amount of an incident light beam, includes: light shielding vanes that are configured movably, and move to change an opening area enabling a passage of the light beam, thereby adjusting the amount of the light beam; an electromagnetic actuator including a coil through which a current passes, and a permanent magnet that generates a magnetic flux, moves with respect to the coil by an electromagnetic force due to an interaction between the current passing through the coil and the magnetic flux, and is connected to the light shielding vanes to move the light shielding vanes; and a position detector including: a magnetic element that outputs a predetermined voltage in accordance with intensity of a magnetic field from the permanent magnet; and an output characteristics corrector that obtains a predetermined correction parameter, and corrects output characteristics of the magnetic element based on the correction parameter.
Abstract:
In an image display apparatus of the invention, a motion area detection module sequentially detects a motion area in each of frame images sequentially displaced by an image display device. A motion compensation module performs motion compensation for the detected motion area of each frame image, generates drive image data with a result of the motion compensation, and outputs the drive image data to actuate the image display device. A luminance adjustment module eliminates a luminance difference between the detected motion area and a stationary area in each frame image, which is ascribed to a decrease in luminance of the motion area relative to a luminance of the stationary area due to the motion compensation by the motion compensation module and potentially arises in the frame image displayed by the image display device. This arrangement of the invention enables effective motion compensation without requiring a large-scale processing circuit for generation of interpolated frame images.
Abstract:
Provided is a motor having a magnetic polar unit in which a permanent magnetic polar array having arranged therein alternately a plurality of permanent magnetic polar elements in alternate opposite poles is made to face a plurality of electromagnetic coil arrays alternately excited at opposite poles, and the permanent magnetic polar array is made to move thereby; wherein the motor further comprises a sensor for detecting the periodical magnetic change accompanying the movement of the permanent magnetic polar array, the output of the sensor is directly returned as a direct drive waveform to the electromagnetic coils, and this drive circuit forms the excitation signal based on the return signal.