Abstract:
An apparatus for obtaining 3-D surface contour image data of a tooth has a double telecentric optical system disposed to form an image of the surface of the tooth onto an image detector array. A focus adjustment mechanism is actuable to adjust the position of either or both the double telecentric optical system and the image detector array along an optical axis to each of a sequence of focus positions. A control logic processor is in control signal communication with the focus adjustment mechanism to adjust focus position, and is in image data communication with the image detector array for receiving image data obtained by the image detector array and with a memory for storing the received image data corresponding to each of the sequence of focus positions. The control logic processor is further responsive to stored instructions for computing 3-D surface contour image data from the image data.
Abstract:
A method for image linear structure detection in medical imaging. The method includes locating microcalcification (mcc) candidate spots in a mammographic image; forming candidate clusters; assigning ranks to the candidate clusters; identifying linear structures in the neighborhood where the candidate clusters reside; and altering the ranks of the candidate clusters for which linear structures have been identified in the neighborhood.
Abstract:
A system for identifying anatomical structure depicted in an in vivo image, that includes an examination bundlette having a captured in vivo image; and a gastrointestinal atlas that includes a list of individual anatomical structures and characterization data of the individual anatomical structures. A classification engine analyzes the examination bundlette and the gastrointestinal atlas to identify the anatomical structure depicted in the captured in vivo image.
Abstract:
A method for determining the presence of a face from image data utilizes at least first and second algorithms. The first algorithm prescreens the image data, by determining a plurality of face candidates utilizing a pattern matching technique that identifies image windows likely to contain faces based on color and shape information. The second algorithm processes the face candidates determined by the first algorithm, and uses a posterior probability function classifier to determine the presence of the face.
Abstract:
A method and a system are disclosed for labeling an anatomical point associated with a lesion in an organ such as a lung. The method includes: a segmentation of a vessel tree anatomical structure starting from an autonomously determined initial image point; labeling the vessel segments of the vessel tree segmentation with segment labels based on a priori anatomical knowledge, thereby creating an individualized anatomical model; receiving a user-specified image point having a location from a user and locating a nearby vessel structure; tracking along the vessel structure in a direction towards a root of a parent vessel tree until a prior labeled vessel segment is encountered in the anatomical model, and assigning the label of the encountered prior labeled vessel segment from the anatomical model as an anatomical location label of the user-specified image point.
Abstract:
A digital image processing method for detecting faces in a digital color image comprises the steps of: providing a distributed face detection system having complementary classifiers, wherein the classifiers are complementary in a frequency domain; selecting classifier parameters for the complementary classifiers from a plurality of different parameter generating sources, at least one of which is controllable by human input; reconfiguring the complementary classifiers in the distributed face detection system according to the selected classifier parameters; and detecting faces using the distributed face detection system.
Abstract:
A method for selecting an emphasis image from a collection of images based on facial identification comprises the steps of: (a) obtaining a collection of digital images; (b) detecting image patterns indicative of the presence of one or more faces in the digital images, thereby identifying one or more detected faces for each image in which a face is detected; (c) recognizing one or more faces from the detected faces for each of the images in which a face is detected; and (d) scoring an image based on the relative frequency of occurrence of a recognized face within the collection of images, thereby producing an emphasis image characteristic of the most frequently occurring face in the collection of images.
Abstract:
A method for producing a cropped digital image, includes the steps of: providing a plurality of partially overlapping source digital images; providing a cropping aspect ratio L:H, the cropping aspect ratio being the ratio of the length to the height of the cropped digital image; providing a cropping criterion, the cropping criterion being a criterion for the size and location of the cropped digital image; combining the source digital images to form a composite digital image; selecting the cropping region of the composite digital image according to the cropping criterion, said cropping region being a rectangular region having aspect ratio L:H, and having size and location determined by the cropping criterion; and, cropping the composite digital image to the cropping region to form a cropped digital image.
Abstract:
A method for securely transacting a transaction based on a transaction document having an image contained within the document, the method includes the steps of compressing an image on the document; scrambling the structure of the compressed image according to a permutation; obtaining the inverse permutation; applying the inverse permutation to the scrambled image for obtaining an unscrambled image; and decompressing the unscrambled image.
Abstract:
A method for determining the presence of a face from image data includes a face detection algorithm having two separate algorithmic steps: a first step of prescreening image data with a first component of the algorithm to find one or more face candidate regions of the image based on a comparison between facial shape models and facial probabilities assigned to image pixels within the region; and a second step of operating on the face candidate regions with a second component of the algorithm using a pattern matching technique to examine each face candidate region of the image and thereby confirm a facial presence in the region, whereby the combination of these components provides higher performance in terms of detection levels than either component individually. In a camera implementation, a digital camera includes an algorithm memory for storing an algorithm comprised of the aforementioned first and second components and an electronic processing section for processing the image data together with the algorithm for determining the presence of one or more faces in the scene. Facial data indicating the presence of faces may be used to control, e.g., exposure parameters of the capture of an image, or to produce processed image data that relates, e.g., color balance, to the presence of faces in the image, or the facial data may be stored together with the image data on a storage medium.