Abstract:
A wireless dockee device may include a memory, and at least one processor configured to authenticate the wireless dockee to a wireless docking service using a Wi-Fi direct service (WFDS) application service platform (ASP). A wireless docking center device may include a memory, and at least one processor configured to authenticate a wireless dockee to a wireless docking service of a wireless docking center using a Wi-Fi direct service (WFDS) application service platform (ASP).
Abstract:
A method of determining a modulation coding scheme (MCS) for communications between a communications device and a client station (STA). The communications device determines a first MCS for transmitting data to the STA during a first sounding interval based, at least in part, on channel state information received from the STA upon initiation of the first sounding interval. The device determines a first series of packet error rates (PERs) associated with one or more data transmissions to the STA during the first sounding interval. The device then determines a second MCS for transmitting data to the STA during a second sounding interval based, at least in part, on the first PER in the first series of PERs. Specifically, the second MCS is independent of the remaining PERs in the first series.
Abstract:
Apparatus and methods are disclosed that provide various incentive schemes for owners of low-power base stations to allow others nearby to use their base station, enabling offloading of some users from a nearby macrocell, thus helping improve overall network performance. For example, a “win-win” scenario might exist when a sharing opportunity at a low-power base station overlaps with a sharing opportunity at the neighboring macrocell. During this overlap, when the low-power base station provides access to its air interface to one or more UEs outside of a set of UEs associated with the low-power base station, an incentive credit may be received. Incentive credits can take various forms, and in some examples, may be in an amount that is a function of an amount of contribution to the network resulting from the provision of access to the air interface.
Abstract:
Techniques are described for establishing a Wireless Serial Bus (WSB) service to transport data using a Media Agnostic Universal Serial Bus (MAUSB) protocol according to a selected transport mode in a WSB session of the WSB service. The MAUSB protocol may be deployed either over an Internet Protocol (IP) stack or directly over a Media Access Control (MAC) layer. According to the techniques, the wireless service advertiser and the wireless service seeker negotiate the transport mode for the MAUSB protocol in each WSB session of the WSB service. During a service discovery process, the wireless service advertiser identifies one or more supported transport modes for the MAUSB protocol in service information for the WSB service. During a P2P connection setup and a WSB session setup, the wireless service seeker indicates a selected one of the supported transport modes for the MAUSB protocol in session information for the WSB session.
Abstract:
A computing device of a peer-to-peer group for a wireless communication protocol may determine that a peer-to-peer connection for the group transports an application flow sourced by a Group Owner to a client of the Group Owner. The computing devices of the group select the client that receives the application flow sourced by the Group Owner to be a new Group Owner for the group. As a consequence, the computing device of the group that receives the application flow is the new Group Owner and, as a result, the Group Owner for the group receives the application flow whereas prior to the selection of the new Group Owner the Group Owner transmitted the application flow.
Abstract:
Methods, systems, and devices are described for supporting unknown peripheral function protocols (PFP) with a wireless docking station. A wireless docking station may facilitate connections between a wireless dockee and peripherals employing both recognized and unrecognized PFPs. A docking station may request one or more service discovery parameters from a peripheral having an unrecognized PFP. The docking station may receive service discovery parameters in response, convey the received discovery parameters to a wireless dockee, and facilitate discovery and a connection between the device and the peripheral. The discovery parameters may include various identifiers related to peripheral function, identity, and location.
Abstract:
In one example, a method includes determining, by a wireless dockee (WD), one or more wireless docking environments (WDNs) associated with a wireless docking center (WDC), wherein each WDN of the one or more WDNs corresponds to at least one peripheral function (PF) of one or more PFs that are each associated with the WDC. In this example, the method also includes wirelessly accessing, by the WD, a respective at least one PF corresponding to a particular WDN of the one or more WDNs associated with the WDC.
Abstract:
A host device receives a Universal Serial Bus (USB) transfer request from a USB host driver, modifies the USB transfer request, encapsulates the modified USB transfer request for transmission via a wireless communication link, transmits the encapsulated modified USB transfer request to a wireless peripheral device via the wireless communication link, receives a transfer response that encapsulates a plurality of USB transfer responses from the wireless peripheral device via the wireless communication link, decapsulates the encapsulated transfer response, and transmits each of the plurality of USB transfer responses to the USB host driver.
Abstract:
A sink device in a Wireless Display (WD) system may establish a user input device control communication channel between a source device and sink device in a WD system to allow the sink device to send device control inputs to the source device. The user input device control communication channel may include a reverse channel architecture referred to as the Wi-Fi User Input Back Channel (UIBC) that has been modified to transport one or more additional input types over UDP. For example, UIBC may be extended to transport voice input and VNC input types.
Abstract:
A wireless dockee device may include a memory, and at least one processor configured to authenticate the wireless dockee to a wireless docking service using a Wi-Fi direct service (WFDS) application service platform (ASP). A wireless docking center device may include a memory, and at least one processor configured to authenticate a wireless dockee to a wireless docking service of a wireless docking center using a Wi-Fi direct service (WFDS) application service platform (ASP).