Abstract:
There has been a problem that difference in refractive index between an opposite substrate or a moisture barrier layer provided thereover, and air is maintained large, and light extraction efficiency is low. Further, there has been a problem that peeling or cracking due to the moisture barrier layer is easily generated, which leads to deteriorate the reliability and lifetime of a light-emitting element. A light-emitting element comprises a pixel electrode, an electroluminescent layer, a transparent electrode, a passivation film, a stress relieving layer, and a low refractive index layer, all of which are stacked sequentially. The stress relieving layer serves to prevent peeling of the passivation film. The low refractive index layer serves to reduce reflectivity of light generated in the electroluminescent layer in emitting to air. Therefore, a light-emitting element with high reliability and long lifetime and a display device using the light-emitting element can be provided.
Abstract:
A display device which can display a two-dimensional image that gives a viewer a strong sense of depth or three dimensions is provided. A display device includes a light-transmitting layer with a viewing surface and a convex surface facing each other, and a display region in which a plurality of display elements for displaying an image toward the viewing surface are provided along the convex surface. In the display device, the refractive index of the light-transmitting layer is higher than the refractive index of the atmosphere, and the viewing surface is a surface intersecting the convex surface at three points, or a distance between a foot N of a perpendicular line drawn from a point M on the convex surface to the surface and an intersection P of the perpendicular line with the viewing surface is largest when the point M is at an outermost point.
Abstract:
A light emitting device comprises a pair of electrodes and a mixed layer provided between the pair of electrodes. The mixed layer contains an organic compound which contains no nitrogen atoms, i.e., an organic compound which dose not have an arylamine skeleton, and a metal oxide. As the organic compound, an aromatic hydrocarbon having an anthracene skeleton is preferably used. As such an aromatic hydrocarbon, t-BuDNA, DPAnth, DPPA, DNA, DMNA, t-BuDBA, and the like are listed. As the metal oxide, molybdenum oxide, vanadium oxide, ruthenium oxide, rhenium oxide, and the like are preferably used. Further, the mixed layer preferably shows absorbance per 1 μm of 1 or less or does not show a distinct absorption peak in a spectrum of 450 to 650 nm when an absorption spectrum is measured.
Abstract:
An EL element having a novel structure is provided, which is suitable for AC drive. A light-emitting element of the invention is provided with material layers (material layers each having approximately symmetric I-V characteristics with respect to the zero point in a graph having the abscissa axis showing current values and the ordinate axis showing voltage values) between a first electrode and a layer including an organic compound and between the layer including the organic compound and a second electrode respectively. Specifically, each of the material layers is a composite layer including a metal oxide and an organic compound.
Abstract:
There has been a problem that difference in refractive index between an opposite substrate or a moisture barrier layer provided thereover, and air is maintained large, and light extraction efficiency is low. Further, there has been a problem that peeling or cracking due to the moisture barrier layer is easily generated, which leads to deteriorate the reliability and lifetime of a light-emitting element. A light-emitting element comprises a pixel electrode, an electroluminescent layer, a transparent electrode, a passivation film, a stress relieving layer, and a low refractive index layer, all of which are stacked sequentially. The stress relieving layer serves to prevent peeling of the passivation film. The low refractive index layer serves to reduce reflectivity of light generated in the electroluminescent layer in emitting to air. Therefore, a light-emitting element with high reliability and long lifetime and a display device using the light-emitting element can be provided.
Abstract:
An EL element having a novel structure is provided, which is suitable for AC drive. A light-emitting element of the invention is provided with material layers (material layers each having approximately symmetric I-V characteristics with respect to the zero point in a graph having the abscissa axis showing current values and the ordinate axis showing voltage values) between a first electrode and a layer including an organic compound and between the layer including the organic compound and a second electrode respectively. Specifically, each of the material layers is a composite layer including a metal oxide and an organic compound.
Abstract:
In order to provide a highly reliable organic EL element, a first step in which a deposition material is heated and vaporized in a deposition chamber in which the pressure is reduced and a second step in which a layer included in an EL layer is deposited in the deposition chamber are performed while exhaustion is performed and the partial pressure of water in the deposition chamber is measured with a mass spectrometer. Alternatively, the deposition chamber in the deposition apparatus includes a deposition material chamber and is connected to an exhaust mechanism. The deposition material chamber is separated from the deposition chamber by a sluice valve, includes a deposition material holding portion including a heating mechanism, and is connected to a mass spectrometer and an exhaust mechanism.
Abstract:
There has been a problem that difference in refractive index between an opposite substrate or a moisture barrier layer provided thereover, and air is maintained large, and light extraction efficiency is low. Further, there has been a problem that peeling or cracking due to the moisture barrier layer is easily generated, which leads to deteriorate the reliability and lifetime of a light-emitting element. A light-emitting element comprises a pixel electrode, an electroluminescent layer, a transparent electrode, a passivation film, a stress relieving layer, and a low refractive index layer, all of which are stacked sequentially. The stress relieving layer serves to prevent peeling of the passivation film. The low refractive index layer serves to reduce reflectivity of light generated in the electroluminescent layer in emitting to air. Therefore, a light-emitting element with high reliability and long lifetime and a display device using the light-emitting element can be provided.
Abstract:
Provided is a display device with extremely high resolution, a display device with higher display quality, a display device with improved viewing angle characteristics, or a flexible display device. Same-color subpixels are arranged in a zigzag pattern in a predetermined direction. In other words, when attention is paid to a subpixel, another two subpixels exhibiting the same color as the subpixel are preferably located upper right and lower right or upper left and lower left. Each pixel includes three subpixels arranged in an L shape. In addition, two pixels are combined so that pixel units including subpixel are arranged in matrix of 3×2.
Abstract:
A display device which exhibits light with high color purity is provided. A display device with low power consumption is provided. An embodiment is a display device which includes a first pixel electrode, a second pixel electrode, a light-emitting layer, a common electrode, a first protective layer, and a semi-transmissive layer. The light-emitting layer includes a first region positioned over the first pixel electrode and a second region positioned over the second pixel electrode. The common electrode is positioned over the light-emitting layer. The first protective layer is positioned over the common electrode. The semi-transmissive layer is positioned over the first protective layer. Reflectivity with respect to visible light of the semi-transmissive layer is higher than reflectivity with respect to visible light of the common electrode. The semi-transmissive layer does not overlap with the first region and overlaps with the second region. For example, the semi-transmissive layer may include an opening in a position overlapping with the first region.