Abstract:
A display may have an array of pixels. Display driver circuitry may supply data and control signals to the pixels. Each pixel may have seven transistors, a capacitor, and a light-emitting diode such as an organic light-emitting diode. The seven transistors may receive control signals using horizontal control lines. Each pixel may have first and second emission enable transistors that are coupled in series with a drive transistor and the light-emitting diode of that pixel. The first and second emission enable transistors may be coupled to a common control line or may be separately controlled so that on-bias stress can be effectively applied to the drive transistor. The display driver circuitry may have gate driver circuits that provide different gate line signals to different rows of pixels within the display. Different rows may also have different gate driver strengths and different supplemental gate line loading structures.
Abstract:
Flexible display substrate, flexible display panel, and display apparatus, and their fabrication methods are provided. In an exemplary flexible display substrate, a motherboard is formed on a rigid substrate that is magnetisable. The motherboard includes a magnetic first flexible substrate and a plurality of flexible display panels on the magnetic first flexible substrate. When the rigid substrate is magnetized, the motherboard is cut to separate the plurality of flexible display panels from each other, followed by demagnetizing the rigid substrate.
Abstract:
A display device includes: a flexible substrate; a plurality of stacked bodies that are formed on the flexible substrate; and a plurality of sealing layers that seal the plurality of stacked bodies, respectively. Each of the plurality of stacked bodies includes a lower electrode, an upper electrode, and alight-emitting layer interposed between the lower and upper electrodes to configure at least one light-emitting element. The adjacent sealing layers are separated with a space interposed therebetween. The upper electrode sealed by each of the plurality of sealing layers is separated from the upper electrode sealed by the adjacent sealing layer with the space interposed therebetween.
Abstract:
An organic light emitting diode (OLED) display includes: a substrate including a plurality of organic light emitting elements; an adhesive member on at least a portion of an upper surface of the substrate; a flexible circuit board adhered to the upper surface of the adhesive member and having a portion bent to be mounted to a lower surface of the substrate; and a light blocking member at the upper surface of the substrate, wherein the light blocking member is laterally offset from the adhesive member.
Abstract:
An organic light-emitting display device including a TFT comprising an active layer, a gate electrode comprising a lower gate electrode and an upper gate electrode, and source and drain electrodes insulated from the gate electrode and contacting the active layer; an organic light-emitting device electrically connected to the TFT and comprising a pixel electrode formed in the same layer as where the lower gate electrode is formed; and a pad electrode electrically coupled to the TFT or the organic light emitting device and comprising a first pad electrode formed in the same layer as in which the lower gate electrode is formed, a second pad electrode formed in the same layer as in which the upper gate electrode is formed, and a third pad electrode comprising a transparent conductive oxide, the first, second, and third pad electrodes being sequentially stacked.
Abstract:
An organic light-emitting display device including a TFT comprising an active layer, a gate electrode comprising a lower gate electrode and an upper gate electrode, and source and drain electrodes insulated from the gate electrode and contacting the active layer; an organic light-emitting device electrically connected to the TFT and comprising a pixel electrode formed in the same layer as where the lower gate electrode is formed; and a pad electrode electrically coupled to the TFT or the organic light emitting device and comprising a first pad electrode formed in the same layer as in which the lower gate electrode is formed, a second pad electrode formed in the same layer as in which the upper gate electrode is formed, and a third pad electrode comprising a transparent conductive oxide, the first, second, and third pad electrodes being sequentially stacked.
Abstract:
An organic light emitting diode (OLED) display includes: a substrate including a plurality of organic light emitting elements; an adhesive member on at least a portion of an upper surface of the substrate; a flexible circuit board adhered to the upper surface of the adhesive member and having a portion bent to be mounted to a lower surface of the substrate; and a light blocking member at the upper surface of the substrate, wherein the light blocking member is laterally offset from the adhesive member.
Abstract:
A display panel includes: a plurality of pixel circuits formed in a matrix on a substrate; an insulating layer covering the plurality of pixel circuits; a plurality of light emitting elements connected to the plurality of pixel circuits, and arranged in a matrix on the insulating layer; a filtering layer including a light transmitting section at least in a part of a region facing the light emitting element and a light shielding section formed in a same plane as the light transmitting section, and formed on an opposite side from the pixel circuit in relation to the light emitting element; a light reflecting section formed in a region facing the light shielding section, and between the light emitting element and the filtering layer; and a light receiving element formed in a region facing the light shielding section, and on the pixel circuit side in relation to the light emitting element.
Abstract:
Illustrated and described is an illuminant, including at least one organic light emitting diode which is applied to a carrier material that is vapor deposited with a metal layer which metal layer supplies the at least one organic light emitting diode with voltage and is connectable with connecting conductors, wherein at least one connecting contact is bonded on one side at least to the metal layer and on another side directly fixated in an insulating material housing.
Abstract:
A self-light emitting display unit capable of improving manufacturing yield is provided. Sizes of color pixel circuits corresponding to pixels for R, G, and B are respectively set unevenly within a pixel circuit according to a magnitude ratio of drive currents which allow color self-light emitting elements in the pixel to emit with a same light emission luminance. Thereby, the pattern densities of color pixel circuits respectively corresponding to the pixels for R, G, and B become even to each other, and the pattern defect rate as the whole pixel circuit is decreased.