Abstract:
A method, system and computer program product for a wireless mobile display digital interface (WMDDI) association procedure that allows establishing and joining more than one multicast group to facilitate the interoperability of multiple client devices based on host and client capabilities. The protocol provides for the exchange and update of capabilities and multicast addresses for layered multicast transmission applications. The system is used for interoperating devices with different capabilities and provides for efficient transmissions by using different multicast addresses mapped to different layers of a bitstream. The protocol adapts to changes in capabilities, in joining/releasing of multicast addresses and in link quality.
Abstract:
Proxy devices simultaneously support multiple modes of client device operation. Embodiments facilitate continued support of idle mode, proxy state operation of one or more client devices by a proxy device that is serving an active connected mode proxied client device. Paging message delivery from the proxy device to an idle mode proxied client device is facilitated by the proxy device monitoring a channel associated with the active connected mode proxied client device for a message (e.g., paging message) associated with the idle mode proxied client device.
Abstract:
A method of facilitating communication in a wireless ad-hoc network comprises: generating, at a node in the wireless ad-hoc network, target availability information with regard to one or more transmission slots, the target availability information indicating whether the node is permitted to receive a transmission during each transmission slot; generating, at the node, owner availability information with regard to one or more transmission slots, the owner availability information indicating whether the node is permitted to transmit during each transmission slot; and broadcasting, from the node, the target availability information and the owner availability information to separately indicate availability as either an owner or a target for one or more transmission slots.
Abstract:
A system and method are provided for using frequency domain spreading to generate real signals in the time domain. The method supplies a first complex frequency domain symbol (α) and a second complex frequency domain symbol (αi), and maps (α+jαi) onto a subcarrier (+f). Further, (α−jαi)* is mapped onto a mirror subcarrier (−f). The mappings are converted into a complex time domain symbol carrying α and jαi in a single inverse fast Fourier transformation (IFFT). The real component of the complex time domain symbol (α) is initially supplied, and subsequently supplied is an imaginary component of the complex time domain symbol (αi). The real symbol component (α) is supplied by carrying α on the subcarrier (+f), and carrying (α)* on the mirror subcarrier (−f). The imaginary symbol component αi is supplied by carrying αi on the subcarrier (+f), and carrying (αi)* on the mirror subcarrier (−f).
Abstract:
A method and apparatus for generating and use of a position location reference signal that allows a receiver to receive position location signals from relatively weak signal generators when in the presence of a strong signal source. The position location reference signals from multiple sources can be synchronized to occur within a scheduled time slot of a time division multiplexed communication system. During the scheduled time slot, each signal source can configure a transmission that includes a media access control address that corresponds to a value reserved for position location signals. Each signal source also configures the transmission to include a position location reference signal that corresponds to the signal source. The position location signals from each of the signal sources is positioned to occur at a time within the data portion of the scheduled time slot that no neighboring signal source transmits its corresponding position location signal.
Abstract:
In general, techniques are described for preparing video data in accordance with a wireless display protocol. For example, a portable device comprising a module to store video data, a wireless display host module and a wireless interface may implement the techniques of this disclosure. The wireless display host module determines one or more display parameters of a three-dimensional (3D) display device external from the portable device and prepares the video data to generate 3D video data based on the determined display parameters. The wireless interface then wirelessly transmits the 3D video data to the external 3D display device. In this way, a portable device implements the techniques to prepare video data in accordance with a wireless display protocol.
Abstract:
Systems and methods for extending header fields are disclosed. The header field may be extended without changing the current size of the header. Reserve bits may be used to indicate the use of an extended header and the extended header may be store in a variety of locations within the frame, including the frame payload or pad bits.
Abstract:
In a generic Media Access Control (MAC) protocol, the retransmission of a dropped MAC frame is independent of the payload. Methods, systems, and computer products defining a mechanism of retransmission of one or more frames based on content of the payload are provided. The system identifies the content as text or video and retransmits if the content is text. The one or more frames may be retransmitted using a specific retransmission scheme. The retransmission is checked again to determine if it is was dropped, and transmitted again if it was dropped.
Abstract:
An orthogonal frequency division multiplex (OFDM) transmitter may adaptively load each sub-carrier, buffering less than an OFDM frame in order to reduce hardware requirements and latency. The transmitter may use feedback information from the receiver regarding the quality of the sub-carriers. In addition, combining repetition and puncturing to achieve a desired date rate per class further reduces hardware by simplifying or even eliminating an interleaver. Additional mitigation and even performance enhancement techniques are incorporated to address inter-class boundaries within an OFDM frame, such as introducing transition classes. Channel state information may be reported in various formats including full bitmap, changed subchannels, and reported bad subchannels.
Abstract:
A method is provided for reducing the search space of an acquiring ultra wideband (UWB) device seeking to join an UWB communication system, such as a Multi-band orthogonal frequency divisional multiplexing (OFDM) UWB system, by providing wireless network information, such as the hopping pattern or Time-Frequency Code (TFC), timing and frequency information to the acquiring UWB device. The wireless network information is provided using a short range wireless module such as Bluetooth that may coexist with a UWB device. For example, an assisting UWB device, via a short range Bluetooth device module, may convey initial synchronization information, to the acquiring UWB device that also may have a coexisting UWB module. By knowing the TFC, timing and frequency information the acquiring UWB device may know the approximate beginning of the superframes of the UWB devices in the UWB communication system which may help reduce power consumption and probability of false alarm.