Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure provides a method and apparatus for configuring a paging area while centering a terminal thereon and updating the same in a network supporting a light connection. According to the present disclosure, a terminal in a communication system may: receive an RRC connection release message including paging area (PA)-related information from a first base station and receive system information from a second base station; and check whether a PA has been changed, on the basis of the PA-related information and PA-related information included in the system information, and transmit an RRC connection resume request message to the second base station when the PA has been changed.
Abstract:
The present application discloses a method and eNB equipment for supporting seamless handover. The method comprises the following steps of: receiving, by a target eNB, random access information or an RRC connection reconfiguration completion message from a UE; transmitting, by the target eNB, a data transmission stopping indication message to a source eNB; and, stopping, by the source eNB, transmitting downlink data to the UE, and/or stopping, by the source eNB, receiving uplink data from the UE. The present invention further provides several other methods and eNB equipments for supporting seamless handover. By the methods for supporting seamless handover provided by the present invention, the delay of data transmission and the unnecessary data transmission or unnecessary data monitoring of a source eNB can be avoided, the waste of resources and the power consumption can be reduced, and the missing and duplication transmission of data can be avoided.
Abstract:
A method for operating a mobile device in a mobile communication network. The method comprises transmitting a mobile device component identifier to a network node within the mobile communication network. The mobile device component identifier identifies at least one hardware or software component of the mobile device. The mobile device component identifier is indicative of capability information specifying at least one capability of the mobile device for communication with the mobile communication network. A corresponding method for operating a network node is also provided.
Abstract:
The present invention relates to a method and a device for cell activation in a carrier aggregation system, and the method for activating a cell of a terminal according to one embodiment of the present invention comprises: a step for receiving an activation message of a first cell; a step for activating the first cell when the message of the first cell is received; an information obtaining step for obtaining uplink activation information of the first cell; and a transmission determination step for determining whether to execute an uplink transmission according to the uplink activation information. According to an embodiment of the present invention, efficient carrier management plan can be provided.
Abstract:
A method for transmitting terminal capability information in a communication system supporting a plurality of carriers is provided. The method includes transmitting a control message including terminal capability information, wherein the terminal capability information includes at least one of an information element (IE) indicating whether to support a multi-bearer, an IE indicating whether to support a secondary cell group (SCG) bearer, or an IE indicating whether to support dual connectivity (DC).
Abstract:
The present disclosure relates to converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT), and may be applied to intelligent services, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method according to disclosed aspects includes receiving a first control message including a first random access response window for a first cell group, receiving a second control message for adding a second cell group, including information on a second random access response window size for the second cell group, transmitting, on a cell of the second cell group, a random access preamble, and monitoring, on the cell of the second cell group, a random access response based on the second random access response window size for the second cell group.
Abstract:
A data transmission method of a User Equipment, UE, in a Long Term Evolution, LTE, compliant mobile communications network, and a corresponding UE. The method comprises detecting reconfiguration of a bearer from a split bearer in which uplink Packet Data Convergence Protocol, PDCP, Protocol Data Units, PDUs, are transmitted to both a Master eNB, MeNB, and to a Secondary eNB, SeNB, to a non-split bearer in which uplink PDCP PDUs are transmitted only to the MeNB. If reconfiguration of a bearer from a split bearer to a non-split bearer in which uplink PDCP PDUs are transmitted to the MeNB is detected, the method further comprises initiating retransmission of PDCP PDUs from the first PDCP PDU for which transmission was attempted via the SeNB and for which there has been no confirmation of successful delivery by a protocol layer below the PDCP layer within the UE. The method further comprises retransmitting only PDCP PDUs for which transmission of the PDU was attempted via the SeNB.
Abstract:
Defined is a handover procedure of a User Equipment (UE) for which multiple UpLink (UL) carriers requiring different UL Timing Advances (TAs) are aggregated in a mobile communication system. The handover procedure includes admitting execution of handover to a target cell of the UE at the request of a source cell, setting radio resource information to be used by the UE in the target cell and transmitting the set radio resource information to the source cell, determining whether a random access procedure, which is executed, among the multiple UL carriers, with a reference UL carrier or with an UL carrier to which the same UL TA as that of the reference UL carrier is applied, has been completed, and determining that a handover procedure of the UE has been successfully completed if the random access procedure has been completed, and determining that the handover procedure of the UE has failed if the random access procedure fails.
Abstract:
Defined is a handover procedure of a User Equipment (UE) for which multiple UpLink (UL) carriers requiring different UL Timing Advances (TAs) are aggregated in a mobile communication system. The handover procedure includes admitting execution of handover to a target cell of the UE at the request of a source cell, setting radio resource information to be used by the UE in the target cell and transmitting the set radio resource information to the source cell, determining whether a random access procedure, which is executed, among the multiple UL carriers, with a reference UL carrier or with an UL carrier to which the same UL TA as that of the reference UL carrier is applied, has been completed, and determining that a handover procedure of the UE has been successfully completed if the random access procedure has been completed, and determining that the handover procedure of the UE has failed if the random access procedure fails.
Abstract:
Disclosed is a method for wireless communication, including identifying a path loss and a size of a message that a user equipment will transmit after a transmission of a preamble, selecting a first preamble set from at least two preamble sets if the path loss is less than a first threshold and the size of the message is greater than a second threshold, selecting a preamble from the selected first preamble set if the first preamble set is selected, transmitting the selected preamble, and receiving a response message in response to the 10 transmission of the selected preamble.