Abstract:
A downhole tool designed to be disposed in a borehole of a subterranean formation is provided. The downhole tool includes a probe used to interface with the subterranean formation in order to sample fluid from or to inject fluid into the subterranean formation. The downhole tool also includes a sample flowline fluidly coupled to the probe and used to direct fluid through the downhole tool. The downhole tool further includes at least two volume chambers. These volume chambers each include a first side fluidly coupled to the sample flowline, a second side fluidly coupled to the guard flowline, and a piston separating the first side from the second side. The downhole tool is able to control a flow of fluid from a high pressure environment to a low pressure environment via the at least two volume chambers, the sample flowline, and the guard flowline.
Abstract:
A method including positioning a downhole acquisition tool in a wellbore in a geological formation; performing a pretest sequence to gather at least one of pressure or mobility information based on downhole acquisition from a sample line, a guard line, or both while the downhole acquisition tool is within the wellbore. The pretest sequence includes controlling a valve assembly to a first valve configuration that may allow the fluid to flow into the downhole tool via one or more flowlines toward a pretest system. The one or more flowlines include the sample line only, the guard line only, or both the sample line and the guard line; and drawing in the fluid through the one or more flowlines. The method also includes controlling the valve assembly to a second valve configuration. The second valve configuration is different from the first valve configuration and may block the one or more flowlines from drawing in the fluid.
Abstract:
A method for using an optical spectrum of mud filtrate for analysis of fluid drawn from a formation is provided. The method includes performing downhole fluid analysis of formation fluid drawn at a wellbore measurement station and determining an optical spectrum of mud filtrate in the formation fluid drawn at the wellbore measurement station. The method also includes performing downhole fluid analysis of formation fluid drawn at an additional wellbore measurement station, and performing the downhole fluid analysis of formation fluid drawn at the additional wellbore measurement station includes using the determined optical spectrum of the mud filtrate in the formation fluid previously drawn at the wellbore measurement station. Additional methods, systems, and devices are also disclosed.
Abstract:
A tool is to be used within a wellbore including a wall and extending into a formation with formation fluid. The tool includes a packer expandable against the wellbore wall with ports included within the packer to enable formation fluid to flow into the tool from the formation. The ports are arranged in a first port configuration optimized based upon a first predetermined formation property.
Abstract:
Methods are provided for reservoir analysis. In some embodiments, a reservoir may be analyzed by obtaining abundance ratios at a first measurement station and a second measurement station and determining an abundance ratio trend. Abundance ratios at a third measurement station may be obtained and plotted versus depth with the previously obtained abundance ratios. A change in the abundance ratio trend may be identified and result in further investigation of the reservoir. If the abundance ratio is unchanged, additional abundance ratios may be obtained and plotted versus depth to further evaluate the abundance ratio trend. Methods for reservoir analysis using fluid predictions with and without offset well information are also provided.
Abstract:
A method includes identifying linearly behaving data within obtained data associated with fluid obtained from a subterranean formation. Shrinkage factor is determined based on the linearly behaving data. A function relating GOR data of the obtained fluid with the determined shrinkage factor is determined. A first linear relationship between optical density (OD) data of the obtained fluid and the function is determined. A second linear relationship between density data of the obtained fluid and the function is determined. An oil-based mud (OBM) filtrate contamination property of OBM filtrate within the obtained fluid based on the first linear relationship is determined. A native formation property of native formation fluid within the obtained fluid based on the second linear relationship is determined. A volume fraction of OBM filtrate contamination within the obtained fluid based on the OBM filtrate contamination property and the native formation property is estimated.
Abstract:
A method for using an optical spectrum of mud filtrate for analysis of fluid drawn from a formation is provided. The method includes performing downhole fluid analysis of formation fluid drawn at a wellbore measurement station and determining an optical spectrum of mud filtrate in the formation fluid drawn at the wellbore measurement station. The method also includes performing downhole fluid analysis of formation fluid drawn at an additional wellbore measurement station, and performing the downhole fluid analysis of formation fluid drawn at the additional wellbore measurement station includes using the determined optical spectrum of the mud filtrate in the formation fluid previously drawn at the wellbore measurement station. Additional methods, systems, and devices are also disclosed.
Abstract:
A tool to be used within a wellbore including a wall, the wellbore extending through a formation including formation fluid, includes a first packer and a second packer. The first packer includes a packer port to enable formation fluid flow through the first packer, with the second packer spaced from the first packer. The first packer and the second packer are expandable to abut the wellbore wall to form an interval within the wellbore between the first packer and the second packer, in which the tool further includes an interval port in fluid communication with the interval.
Abstract:
A method to detect flow rate from a displacement unit entailing locating the displacement unit in a fluid path, monitoring a piston position in the displacement unit for a stroke direction change, starting a timer upon a stroke direction change, monitoring at least one check valve position for an alteration of position, stopping the timer upon the alteration of position, calculating a time between the stroke direction change and the alternation of position, calculating a volume of the displacement unit and calculating the flow rate from the displacement unit by dividing the volume of the displacement unit by the calculated time.
Abstract:
A method for monitoring oil based mud filtrate contamination is provided including steps of analytically dividing a fluid stream into two parts, determining a gas/oil ratio for a native fluid determining an apparent gas/oil ratio for the contaminated fluid and determining on a volume fraction, an oil based contamination level based upon the gas/oil ratio for the native fluid and the apparent gas/oil ratio for the contaminated fluid.