摘要:
Provided are a nonvolatile memory device and a method of fabricating the same, in which a phase-change layer is formed using a solid-state reaction to reduce a programmable volume, thereby lessening power consumption. The device includes a first reactant layer, a second reactant layer formed on the first reactant layer, and a phase-change layer formed between the first and second reactant layers due to a solid-state reaction between a material forming the first reactant layer and a material forming the second reactant layer. The phase-change memory device consumes low power and operates at high speed.
摘要:
A thermoelectric device includes: a substrate; a first nanowire of a first conductive type, which is formed on one side of the substrate; a second nanowire of a second conductive type, which is opposed to the first nanowire; a high temperature part commonly connected to one end of the first nanowire and one end of the second nanowire; low temperature parts connected to the other end of the first nanowire and the other end of the second nanowire, respectively; an insulation layer formed on the first nanowire and the second nanowire; a first metal layer formed on a portion of the insulation layer over the first nanowire, so as to control an electric potential of the first nanowire; and a second metal layer formed on a portion of the insulation layer over the second nanowire, so as to control an electric potential of the second nanowire.
摘要:
An embedded memory required for a high performance, multifunction SOC, and a method of fabricating the same are provided. The memory includes a bipolar transistor, a phase-change memory device and a MOS transistor, adjacent and electrically connected, on a substrate. The bipolar transistor includes a base composed of SiGe disposed on a collector. The phase-change memory device has a phase-change material layer which is changed from an amorphous state to a crystalline state by a current, and a heating layer composed of SiGe that contacts the lower surface of the phase-change material layer.
摘要:
Provided are a thermoelectric device and a method of forming the same, a temperature sensing sensor, and a heat-source image sensor using the same. The thermoelectric device includes a first nanowire and a second nanowire, a first silicon thin film, a second silicon thin film, and a third silicon thin film. The first nanowire and a second nanowire are disposed on a substrate. The first nanowire and the second nanowire are separated from each other. The first silicon thin film is connected to one end of the first nanowire. The second silicon thin film is connected to one end of the second nanowire. The third silicon thin film is connected to the other ends of the first nanowire and the second nanowire. The first and second nanowires extend in a direction parallel to an upper surface of the substrate.
摘要:
Provided are a Phase-change Random Access Memory (PRAM) device and a method of manufacturing the same. In particular, a PRAM device including a heating layer, wherein the heating layer comprises first and second heating layers having different physical properties from each other and a method of manufacturing the same are provided. Since the PRAM device according to the present invention includes a heating layer having optimal heating characteristics, a PRAM device having high reliability and excellent operating characteristics can be manufactured.
摘要:
Provided are an apparatus and method for writing data to a phase-change random access memory (PRAM) by using writing power calculation and data inversion functions, and more particularly, an apparatus and method for writing data which can minimize power consumption by calculating the power consumed while input original data or inverted data is written to a PRAM and storing the data consuming less power. A PRAM consumes a significant amount of power in order to store data in a memory cell since a large electric current is required to flow for a long period of time. According to the present invention, since the PRAM consumes different amounts of power when writing data with a value of 0 and data with a value of 1, the power consumed when input original data is stored and the power consumed when the input original data is inverted and stored are compared to each other, the data with a smaller power consumption is stored when the data is written to the PRAM as a word unit, and thus the power consumption of the PRAM can be reduced.
摘要:
Provided is a phase change memory device including: a phase change memory unit comprising a phase change layer pattern; a laser beam focusing unit locally focusing a laser beam on the phase change layer pattern of the phase change memory unit; and a semiconductor laser unit generating and emitting the laser beam towards the laser beam focusing unit. Thus set or reset operations in the phase change memory device uses laser beams locally applied, thereby reducing the consumption power and preventing destruction or change in information stored in neighboring cell during the operations of unit cell.
摘要:
The present invention refers to: a compound having the general formula (I), wherein n is 0, 1, 2 or; m is 0, 1, 2 or 3; o is 0, 1, 2 or 3; W, X, Y and Z are independently selected from CH, N or N-oxide; A is NR4, C═O, C═S, OP(O)(O), P═O, CH2, or a heteroarly selected from the group consisting of (a), (b), (c), (d), (e), (f), (g); V is C═O, O, S, CH2, or NR5; as well as its use in treating inflammatory diseases such as asthma, COPD, inflammation post infection, arthritis, atherosclerosis, pain and dermatitis.
摘要:
Provided are a nonvolatile memory device and a method of fabricating the same, in which a phase-change layer is formed using a solid-state reaction to reduce a programmable volume, thereby lessening power consumption. The device includes a first reactant layer, a second reactant layer formed on the first reactant layer, and a phase-change layer formed between the first and second reactant layers due to a solid-state reaction between a material forming the first reactant layer and a material forming the second reactant layer. The phase-change memory device consumes low power and operates at high speed.
摘要:
An embedded memory required for a high performance, multifunction SOC, and a method of fabricating the same are provided. The memory includes a bipolar transistor, a phase-change memory device and a MOS transistor, adjacent and electrically connected, on a substrate. The bipolar transistor includes a base composed of SiGe disposed on a collector. The phase-change memory device has a phase-change material layer which is changed from an amorphous state to a crystalline state by a current, and a heating layer composed of SiGe that contacts the lower surface of the phase-change material layer.