Abstract:
The stereo movie editing technique described herein combines knowledge of both multi-view stereo algorithms and human depth perception. The technique creates a digital editor, specifically for stereographic cinema. The technique employs an interface that allows intuitive manipulation of the different parameters in a stereo movie setup, such as camera locations and screen position. Using the technique it is possible to reduce or enhance well-known stereo movie effects such as cardboarding and miniaturization. The technique also provides new editing techniques such as directing the user's attention and easier transitions between scenes.
Abstract:
Foreground object matting uses flash/no-flash images pairs to obtain a flash-only image. A trimap is obtained from the flash-only image. A joint Bayesian algorithm uses the flash-only image, the trimap and one of the image of the scene taken without the flash or the image of the scene taken with the flash to generate a high quality matte that can be used to extract the foreground from the background.
Abstract:
Tilt is reduced or eliminated in captured digital images. Edges in a first image are detected. Angles corresponding to the detected edges are determined. A dominant angle is selected from the determined angles. The first image is rotated according to the selected dominant angle to generate a second image. The second image is a de-tilted version of the first image.
Abstract:
Systems and methods for sketching reality are described. In one aspect, a set of vector primitives is identified from a 2-D sketch. In one implementation, the 2-D sketch is hand-drawn by a user. A 2.5D geometry model is automatically generated from the vector primitives. The 2.5D geometry model is automatically rendered and presented to a user. In one implementation, the user provides 2-D sketch-based user inputs to modify one or more of lighting position, lighting direction, lighting intensity, texture, color, and geometry of the presentation.
Abstract:
Matte-based video restoration technique embodiments are presented which model spatio-temporally varying film wear artifacts found in digitized copies of film media. In general, this is accomplished by employing residual color information in recovering of artifact mattes. To this end, the distributions of artifact colors and their fractional contribution to each pixel of each frame being considered are extracted based on color information from the spatial and temporal neighborhoods of the pixel. The extracted information can then be used to restore the video by removing the artifacts.
Abstract:
The present symmetric stereo matching technique provides a method for iteratively estimating a minimum energy for occlusion and disparity using belief propagation. The minimum energy is based on an energy minimization framework in which a visibility constraint is embedded. By embedding the visibility constraint, the present symmetric stereo matching technique treats both images equally, instead of treating one as a reference image. The visibility constraint ensures that occlusion in one view and the disparity in another view are consistent.
Abstract:
In the described embodiment, methods and systems for processing facial image data for use in animation are described. In one embodiment, a system is provided that illuminates a face with illumination that is sufficient to enable the simultaneous capture of both structure data, e.g. a range or depth map, and reflectance properties, e.g. the diffuse reflectance of a subject's face. This captured information can then be used for various facial animation operations, among which are included expression recognition and expression transformation.
Abstract:
Game data is rendered in three dimensions in the GPU of a game console. A left camera view and a right camera view are generated from a single camera view. The left and right camera positions are derived as an offset from a default camera. The focal distance of the left and right cameras is infinity. A game developer does not have to encode dual images into a specific hardware format. When a viewer sees the two slightly offset images, the user's brain combines the two offset images into a single 3D image to give the illusion that objects either pop out from or recede into the display screen. In another embodiment, individual, private video is rendered, on a single display screen, for different viewers. Rather than rendering two similar offset images, two completely different images are rendered allowing each player to view only one of the images.
Abstract:
An image sharpening technique with halo suppression is presented. Generally, one implementation of this technique completely suppresses the haloing effect typically caused by image sharpening by restricting values to within the local minimum and maximum intensities of the unsharpened image. Thus, if the sharpened value is below the local minimum, it is replaced with the local minimum. Similarly, the local maximum is taken if the sharpened value exceeds it. In other implementations of the technique, haloing caused by image sharpening is suppressed but not completely eliminated, thereby producing a subtle haloing effect.
Abstract:
A system and process for computing a 3D reconstruction of a scene from multiple images thereof, which is based on a color segmentation-based approach, is presented. First, each image is independently segmented. Second, an initial disparity space distribution (DSD) is computed for each segment, using the assumption that all pixels within a segment have the same disparity. Next, each segment's DSD is refined using neighboring segments and its projection into other images. The assumption that each segment has a single disparity is then relaxed during a disparity smoothing stage. The result is a disparity map for each image, which in turn can be used to compute a per pixel depth map if the reconstruction application calls for it.