摘要:
An MR element comprises: a nonmagnetic conductive layer having two surfaces facing toward opposite directions; a free layer disposed adjacent to one of the surfaces of the nonmagnetic conductive layer, wherein the direction of magnetization in the free layer changes in response to an external magnetic field; and a pinned layer disposed adjacent to the other of the surfaces of the nonmagnetic conductive layer, wherein the direction of magnetization in the pinned layer is fixed. The pinned layer incorporates a first pinned layer, a coupling layer and a second pinned layer. The second pinned layer incorporates first to third magnetic layers each of which is made of a magnetic material. Layered structures each made up of a Cu film, a magnetic film and a Cu film are inserted between the first magnetic layer and the second magnetic layer, and between the second magnetic layer and the third magnetic layer, respectively.
摘要:
In exemplary embodiments, first and second parameters are obtained for each of different temperatures of the magnetic recording layer. The absolute value of the first parameter for each magnetic grain has a minimum value when the temperature of each magnetic grain reaches a predetermined temperature that increases as the Curie temperature increases, and decreases as the Curie temperature decreases. The second parameter is related to the standard deviation of the coercivity distribution of the magnetic grains divided by the coercivity of the magnetic recording layer. The method calculates a value where the absolute measurement value of the first parameter has a minimum value and the temperature of the magnetic recording layer at which the standard deviation of the coercivity distribution of the magnetic grains divided by the coercivity of the magnetic recording layer has a maximum value.
摘要:
A thermally-assisted magnetic recording head, includes: a pole that generates a writing magnetic field from an end surface that forms a portion of an air bearing surface opposing a magnetic recording medium; a waveguide through which light for exciting a surface plasmon propagates; a plasmon generator that couples to the light in a surface plasmon mode and generates near-field light from a near-field light generating portion on a near-field light generating end surface that forms the portion of the air bearing surface; and magnetic field focusing parts that are able to focus the writing magnetic field generated from the pole and that are disposed on both sides of the pole in a track width direction from a perspective of the air bearing surface side.
摘要:
A thermally-assisted magnetic recording head, includes: a pole that generates a writing magnetic field from an end surface that forms a portion of an air bearing surface opposing a magnetic recording medium; a waveguide through which light for exciting a surface plasmon propagates; a plasmon generator that couples to the light in a surface plasmon mode and generates near-field light from a near-field light generating portion on a near-field light generating end surface that forms the portion of the air bearing surface; and magnetic field focusing parts that are able to focus the writing magnetic field generated from the pole and that are disposed on both sides of the pole in a track width direction from a perspective of the air bearing surface side.
摘要:
An MR element includes a free layer having a direction of magnetization that changes in response to an external magnetic field, a pinned layer having a fixed direction of magnetization, and a spacer layer disposed between these layers. The spacer layer includes a first region, a second region and a third region that are each in the form of a layer and that are arranged in a direction intersecting the plane of each of the foregoing layers. The second region is sandwiched between the first region and the third region. The first region and the third region are each composed of an oxide semiconductor, and the second region includes at least a nonmagnetic conductor phase.
摘要:
An MR element includes a pinned layer, a free layer and a nonmagnetic space layer or a tunnel barrier layer sandwiched between the pinned layer and the free layer. A magnetization direction of the free layer is substantially perpendicular to a film surface thereof, and a magnetization direction of the pinned layer is substantially parallel to a film surface thereof.
摘要:
A magneto-resistive element has a pinned layer, a free layer, and a spacer layer which is sandwiched between the pinned layer and the free layer. The spacer layer is made of copper. The magneto-resistive element is configured such that sense current is applied in a direction that is perpendicular to layer surfaces. The free layer has: a nonmagnetic layer that includes copper as a main component; and ternary alloy layers each including cobalt (Co), iron (Fe), and nickel (Ni), the ternary alloy layers being disposed on both sides of the nonmagnetic layer. The ternary alloy layer includes nickel and iron at a composition ratio in which a ratio x of an atomic percentage of nickel to a total atomic percentage of nickel and iron is 27%≦x≦45%.
摘要翻译:磁阻元件具有被钉扎层,自由层和夹在被钉扎层和自由层之间的间隔层。 间隔层由铜制成。 磁阻元件被配置为使感应电流沿垂直于层表面的方向施加。 自由层具有:包含铜作为主要成分的非磁性层; 和包含钴(Co),铁(Fe)和镍(Ni)的三元合金层,三元合金层设置在非磁性层的两侧。 三元合金层包括镍和铁,其中镍的原子百分比与镍和铁的总原子百分比的比率x为27%<= x <= 45%的组成比。
摘要:
Provided are a magnetoresistive device capable of obtaining a larger amount of resistance change and responding to a higher recording density and a thin film magnetic head comprising the magnetoresistive device. A first magnetization fixed film and a second magnetization fixed film have magnetization directions antiparallel to each other, and the second magnetization fixed film farther from a magnetization free layer is made of, for example, a material including at least one selected from the group consisting of tantalum (Ta), chromium (Cr) and vanadium (V), and has a bulk scattering coefficient of 0.25 or less. Thereby, a bulk scattering effect by the second magnetization fixed film which has a function of canceling out the amount of resistance change between the magnetization free layer and the first magnetization fixed film can be prevented, and a magnetoresistive ratio ΔR/R can be improved, and recorded magnetic information with a higher recording density can be read out.
摘要:
A magnetoresistive sensor comprises stacked layers. The stacked layers comprises a first magnetic layer, a second non-magnetic intermediate layer, and a second magnetic layer in which a direction of magnetization is variable depending on an external magnetic field. The first magnetic layer, the second non-magnetic intermediate layer, and the second magnetic layer are stacked in this order to form the stacked layers. The first magnetic layer has a first ferromagnetic layer in which a direction of magnetization is pinned relative to the external magnetic field, a first non-magnetic intermediate layer, and a second ferromagnetic layer in which a direction of magnetization is pinned in a direction opposite to the direction of magnetization of the first ferromagnetic layer. The first ferromagnetic layer, the first non-magnetic intermediate layer, and the second ferromagnetic layer are stacked in this order. A sense current flows through the stacked layers substantially in the direction of stacking. A ratio of a layer thickness of the second ferromagnetic layer to a layer thickness of the first ferromagnetic layer is in a range between 1.4 and 1.9. A ratio of a product of a saturation magnetization and the layer thickness of the second ferromagnetic layer to a product of a saturation magnetization and the layer thickness of the first ferromagnetic layer is in a range between 0.9 and 1.1.
摘要:
A free layer of an MR element incorporates a first layer, a second layer, a third layer, a fourth layer, a fifth layer and a sixth layer that are stacked in this order on a nonmagnetic conductive layer. The absolute value of magnetostriction constant of the free layer is 1×10−6 or smaller. The coercivity of the free layer is 20×79.6 A/m or smaller. The first layer is made of an alloy containing ‘a’ atomic percent cobalt and (100−a) atomic percent iron wherein ‘a’ falls within a range of 20 to 50 inclusive. The second layer is made of an alloy containing ‘b’ atomic percent cobalt and (100−b) atomic percent iron wherein ‘b’ falls within a range of 70 to 90 inclusive. In addition, oxidation treatment is given to a surface of the second layer farther from the first layer.