Abstract:
The present invention is directed to realize both higher reading speed and assurance of the larger number of rewriting times for a nonvolatile memory. A semiconductor integrated circuit has a first nonvolatile memory area and a second nonvolatile memory area for storing information in accordance with a threshold voltage which varies. One or plural conditions out of erase verify determination memory gate voltage, erase verify determination memory current, write verify determination memory gate voltage, write verify determination memory current, erase voltage, erase voltage application time, write voltage, and write voltage application time in the first nonvolatile memory area is/are made different from that/those in the second nonvolatile memory area, speed of reading information stored in the first nonvolatile memory area is higher than that of reading information stored in the second nonvolatile memory area, and the assured number of rewriting times in the second nonvolatile memory area is larger than that in the first nonvolatile memory area.
Abstract:
An ester derivant having a crystal structure in which the molecules in two adjacent molecule planes are antiparallel is created from a carboxylic acid having carbon-carbon double bond and a compound having a functional group that can react to a carboxyl group of the carboxylic acid. The crystal of the ester derivant is then subjected to light irradiation or heating.
Abstract:
Disclosed is a nonvolatile memory with a shortened total write time, capable of stably writing data by making a write current constant while reducing fluctuations in a voltage generated by a booster circuit. In a nonvolatile memory such as a flash memory, data is determined at the time of writing operation. While skipping a bit corresponding to write data having the logic “1” (or logic “0”), writing operation to bits corresponding to write data having the logic “0” (or logic “1) is successively performed.
Abstract:
This inventing is intended to shorten data deletion time of a nonvolatile semiconductor memory such as a flash memory (EEPROM). When deleting data written to a memory cell MC0 among flash memory cells MC0 to MC2 formed on a semiconductor substrate PSUB through a separation region NiSO, a voltage of p type well PWL0 in which the memory cell MC0 is formed is raised to 10V and a voltage of the separation region NiSO is raised to 12V by using a voltage application unit different from a voltage application unit applying a voltage to the p type well PWL0. As a result, parasitic capacitances Ca1 and Ca2 generated between p type wells PWL1 and PWL2 in which the unselected memory cells MC1 and MC2 are formed and the separation region NiSO, respectively, and a parasitic capacitance Cb generated between the separation region NiSO and the semiconductor substrate PSUB are charged by the voltage application units. It is, therefore, possible to shorten time required to charge the parasitic capacitances and to shorten the deletion time.
Abstract:
The present invention relates to polyurethane based fiber containing 0.1-25 percent poly(vinylidene fluoride) and a method of making the same.
Abstract:
Each memory cell of a nonvolatile semiconductor memory, essentially, consists of a one-transistor type memory cell such as a MOSFET having a floating gate electrode. When an electric programming operation is carried out, a positive voltage is applied to an n type drain region, a negative voltage is applied to a control gate and a source region is grounded. When an erasing operation is carried out, the positive voltage is applied to the control gate while all the other electrodes and a semiconductor substrate are grounded. Low power consumption can be accomplished because both of the programming operation and erasing operations are carried out by utilizing a tunneling mechanism. Furthermore, because the negative voltage is applied to the word line, a drain voltage at the time of programming of data can be lowered, so that degradation of a gate oxide film at a channel portion can be mitigated.
Abstract:
Each memory cell of a nonvolatile semiconductor memory essentially consisting of a one-transistor type memory cell such as a MOSFET having a floating gate electrode. When an electric programming operation is carried out, a positive voltage is applied to an n type drain region, a negative voltage is applied to a control gate and a source region is grounded. When an erasing operation is carried out, the positive voltage is applied to the control gate while all the other electrodes and a semiconductor substrate are grounded. Low power consumption can be accomplished because both of the programming operation and erasing operations are carried out by utilizing a tunneling mechanism. Particularly because the negative voltage is used for the word line, a drain voltage at the time of programming of data can be lowered, so that degradation of a gate oxide film at a channel portion can be mitigated.
Abstract:
In a semiconductor memory system including a plurality of memory chips, a spare memory is shared among the memory chips. For such a purpose, a common redundant circuit and an external terminal capable of accessing to a spare memory are added to a semiconductor memory system, and a first region for storing a defect address in each memory of the semiconductor memory system and a second region for storing a defect address of the system of the object having the same structure as the first region are provided in the redundant circuit. With this, even when the defect of a normal memory of the semiconductor memory system can not be replaced with the spare memory of the system itself, replacement is made possible with other system having the same structure. Accordingly, the yield of the semiconductor memory system can be increased, and the reliability is also increased.
Abstract:
To effect erase and program operations, i.e., rewrite of the non-volatile memory device efficiently with small electric power consumption and at high speed, a plurality of memory blocks that have a plurality of sectors and that each include a plurality of non-volatile memory cells are connected to buffer memories having at least the same memory capacity as a sector, and a read/write circuit generates internal addresses and timing for selecting sectors according to the external address and timing signals to control the read-out and rewrite of data between the sectors corresponding to the internal addresses and the buffer memories corresponding to the sectors, wherein the read/write circuit selects the sectors at timings shifted from one another and erases or programs the data in the selected sector in order to rewrite the data.
Abstract:
A working fluid composition for use in a refrigeration system which comprises a refrigerating oil comprising a compound having one or more ketone groups in the molecular structure as a base oil and a hydrofluorocarbon.