Abstract:
A method for determining a direction of rotation for an electronically commutated motor (ECM) is described. The motor is configured to rotate a blower and the method comprises rotating the blower using the ECM and determining if the resulting blower rotation is indicative of the desired direction of rotation for the blower.
Abstract:
Methods and systems of controlling the operation of a pump according to a pump operation schedule are described. In one constructions, a pump controller enters a programming mode and monitors a number of inputs received through a user interface while in the programming mode. The programming mode is then exited and a delay time is defined equal to one hour for each input received through the user interface while in the programming mode. A stored pump operation schedule is accessed and operation of the pump is initiated according to the pump operation schedule after a period of time equal to the delay time has elapsed since exiting the programming mode. Operation of the pump is again initiated according to the accessed pump operation schedule every twenty-four hours since the pump operation schedule was last initiated.
Abstract:
There is provided a bus bar fuse holder configured to receive a fuse link and couple each end of the fuse link to a line conductor and a load conductor within the holder. The bus bar holder includes a housing that defines a space in the housing proximate one of a line terminal and load terminal. A clamp unit is configured to receive a portion of a bus bar with the lineup clamp unit disposed in the space defined in the housing. The space configured in the housing also encloses a substantial portion of the bus bar within the housing in a space defined between U-shaped members of the clamp unit.
Abstract:
A system and a method of automatically determining an electric motor type are provided. An electric motor drive controller is configured to be coupled to an electric motor and to determine running parameters of the drive controller for the electric motor. The drive controller includes a memory device, a processor communicatively coupled to the memory device and to a user interface wherein the processor is configured to execute instructions stored on the memory device that cause the processor to automatically measure electrical characteristics of the electric motor, identify the electric motor using the measured electrical characteristics, load pre defined running parameters selected based on the identification into the memory device, and control an operation of the electric motor using the controller and the loaded running parameters.
Abstract:
Methods and systems for programming an electric motor are provided. An electric motor controller configured to be coupled to an electric motor is configured to control the electric motor to produce torque when direct current (DC) link voltage has up to 100% voltage ripple. The controller includes a first power input, a second power input, and a third power input, an energized line detection device, and a microprocessor. Each power input is configured to receive power from an alternating current (AC) power source. The energized line detection device is configured to sense which power input has received power from the AC power source and output an isolated signal. The microprocessor is coupled downstream from the energized line detection device and is configured to determine an operating profile for the electric motor based on the isolated signal.
Abstract:
A controller configured to be coupled to an electric motor. The controller including a processor programmed to receive a signal indicating a stopping command of the electric motor, and control a current such that a capacitor coupled to the electric motor is not overcharged by regenerative energy when a stopping of the electric motor has commenced, wherein controlling the current includes one of the following: upon receiving the signal indicating the stopping command of the electric motor, ramping the current down below a threshold level, or upon receiving the signal indicating the stopping command of the electric motor, forcing the current to circulate in motor windings to prevent regeneration of energy in the capacitor.
Abstract:
An electronic control module is provided. The electronic control module includes an input device, and a processor coupled to the input device. The processor is configured to generate a command signal in response to an input supplied by the input device, and transmit the command signal to a plurality of motors, wherein the command signal controls an operating point of each of the plurality of motors.
Abstract:
A radial blower air guide includes a first end wall substantially circumscribing an end bracket of an electric motor. The air guide includes a second end wall spaced apart from the first end wall and has an inner periphery that circumscribes a periphery of the motor. The air guide includes an outer wall extending from an edge of the first end wall to an edge of the second end wall. The outer wall is formed from a thin curved plate and partially defines a ring-shaped chamber therebetween. The outer wall has an aperture defined therethrough. The air guide includes a baffle plate coupled to the inner periphery of the second end wall. The baffle plate extends a first width toward the first end wall and partially defines the chamber. The baffle plate is configured to deflect air to control the distribution of the airflow from the chamber.
Abstract:
A motor assembly coupled to an external alternating voltage input, the motor assembly comprising a motor including a stator and a rotor rotatable about a longitudinal axis. The motor assembly further includes a circuit assembly, the circuit assembly having a state detector operable to detect the state of the external alternating voltage input and a control unit operable to control the motor based on the state of the external alternating voltage input detected by the state detector. The motor assembly also includes a housing substantially encasing the motor, and the circuit assembly.
Abstract:
A method for monitoring input power to an electronically commutated motor (ECM) is described. The method includes determining, with a processing device, an average input current to the motor, the average input current based on a voltage drop across a shunt resistor in series with the motor, measuring an average input voltage applied to the motor utilizing the processing device, multiplying the average input current by the average voltage to determine an approximate input power, and communicating the average input power to an external interface.