Abstract:
An apparatus for insertion in an enclosed space, including: a tube with: first and second substantially straight portions including first and second ends of the tube, respectively; and a curved portion connecting the first and second portions. The apparatus includes: a plurality of nested segments at least partially disposed within the first substantially straight portion of the tube and connected to the first substantially straight portion; and a first actuator engageable with the tube to displace the first and second substantially straight portions of the tube into and out of the enclosed space through an opening into the enclosed space. The tube is arranged to accept a hose passing through the tube, and a distal segment from the plurality of nested segments is connectable to the hose.
Abstract:
A guide tube pitch adjustment apparatus for aligning distal ends of lance guide tubes in registry with tube openings in a heat exchanger tube sheet is disclosed. A guide tube pitch clamp assembly carried within and supported from a housing. The pitch clamp assembly has at least two V-blocks fastened to a threaded rod. One V-block is fastened to a portion of the threaded rod having right hand threads, and another V-block is fastened to another portion of the threaded rod having left hand threads. Each of the V-blocks supports a portion of one of the guide tubes, and a cross bar clamp within the housing is oriented to span across the V-blocks and adjustably hold the portions of the guide tubes in a spaced relationship such that spacing between the distal ends of adjacent guide tubes may be adjusted by rotation of the threaded rod.
Abstract:
A flow path switching valve is disclosed that can be operated remotely simply by turning flow on and off. A mid portion of the body has at least one passage therein leading from a central axial bore to one or more external ports each having a tractor nozzle. The valve outlet connects the axial bore to a cleaning nozzle. A poppet member is received in the central axial bore. In a first position, the poppet member directs fluid flow through the outlet to the cleaning nozzle connected to the outlet. The poppet member, when in a second position, closes the central axial bore through the outlet end of the valve body and permits fluid flow through the tractor nozzles. Selection of the different flow paths is made by simply reducing flow through the valve below a predetermined fluid flow threshold and then increasing the flow rate above the threshold.
Abstract:
An apparatus for storing, rotating and feeding a high pressure hose, including: a first rotatable drum with a helical groove; a second rotatable drum; and at least one actuator for rotating the first and second drums. For rotation of the first and second drums in first and second opposite directions, respectively, a hose and a cable are coilable into the helical groove such that the hose is in compressive engagement with the cable and the first drum. For rotation of the first and second drums in the second and first directions, respectively, the hose is uncoilable from the first drum and displaceable beyond the apparatus and the cable is coilable about the second drum.
Abstract:
A high pressure rotary nozzle having a rotating shaft operating within a fixed housing wherein the of axial force which acts upon the shaft due to the fluid pressure at the shaft inlet is balanced by allowing passage of a small amount of the pressurized fluid to be bled to an area or chamber between the outside of the opposite end of the shaft and the inside of the housing where the fluid pressure can act axially in an opposing direction upon the shaft to balance the axial inlet force. The balance of axial forces is self-regulating by controlling escape of the fluid through a tapered or frusto-conical region between the shaft and housing. This further provides a fluid bearing between the two surfaces and allows use of interchangeable rotating jet heads having jet orifices which can be oriented in virtually any desirable configuration including axially forward of the nozzle.
Abstract:
A high pressure rotary nozzle having a rotating shaft operating within a fixed housing wherein the of axial force which acts upon the shaft due to the liquid pressure at the shaft inlet is balanced by allowing passage of a small amount of the pressurized liquid to be bled to an area or chamber between the outside of the opposite end of the shaft and the inside of the housing where the liquid pressure can act axially in an opposing direction upon the shaft to balance the axial inlet force. The balance of axial forces is self-regulating by controlling escape of the liquid through a tapered or frusto-conical region between the shaft and housing. This further provides a liquid bearing between the two surfaces and allows use of interchangeable rotating jet heads having jet orifices which can be oriented in virtually any desirable configuration including axially forward of the nozzle.
Abstract:
A high pressure rotary nozzle having a rotating shaft operating within a fixed housing wherein the of axial force which acts upon the shaft due to the fluid pressure at the shaft inlet is balanced by allowing passage of a small amount of the pressurized fluid to be bled to an area or chamber between the outside of the opposite end of the shaft and the inside of the housing where the fluid pressure can act axially in an opposing direction upon the shaft to balance the axial inlet force. The balance of axial forces is self-regulating by controlling escape of the fluid through a tapered or frusto-conical region between the shaft and housing. This further provides a fluid bearing between the two surfaces and allows use of interchangeable rotating jet heads having jet orifices which can be oriented in virtually any desirable configuration including axially forward of the nozzle.
Abstract:
A high pressure rotary nozzle having a rotating shaft operating within a fixed housing wherein the of axial force which acts upon the shaft due to the fluid pressure at the shaft inlet is balanced by allowing passage of a small amount of the pressurized fluid to be bled to an area or chamber between the outside of the opposite end of the shaft and the inside of the housing where the fluid pressure can act axially in an opposing direction upon the shaft to balance the axial inlet force. The balance of axial forces is self-regulating by controlling escape of the fluid through a tapered or frusto-conical region between the shaft and housing. This further provides a fluid bearing between the two surfaces and allows use of interchangeable rotating jet heads having jet orifices which can be oriented in virtually any desirable configuration including axially forward of the nozzle.
Abstract:
A rotatable high pressure tool for cleaning hollow objects by forcing a high pressure fluid such as water from nozzles to create cleaning jet streams and use jet reaction at the tool to continually change the direction of the jet nozzles about a longitudinal axis of the tool while the jets are carried by a cross body rotating about an axis essentially perpendicular to the longitudinal axis. Each of the nozzles provides the same amount of reaction torque to rotate the cross body about its axis. This torque is selectively adjustable at the tool before use by similarly releasing, changing and reclamping the orientation of all nozzles relative to the cross body and by changing the discharge diameters of uniformly sized nozzle tips. The adjustable nozzles are interconnected by gearing so that the changes in orientation of all nozzles during adjustment will be the same. The rotational speed of the nozzles and main body during use are further controlled by being subjected to a torque drag of a viscous liquid between two closely spaced surfaces.