摘要:
The improved mobile robot utilizes a cooperative wheeled support arrangement having a unique axle design that preferably cooperates with a base support module. A tri-axle is preferably used to support at least one omni-wheel on each axle section. Multiple omni-wheels on each section can be used for higher load applications. The tri-axle is of a fixed design and each wheel pivots on the individual axle section. Preferably, the axle sections are welded to each other.
摘要:
A robotic vehicle chassis is provided. The robotic vehicle chassis includes a first chassis section, a second chassis section, and a hinge joint connecting the first and second chassis sections such that the first and second chassis sections are capable of rotation with respect to each other in at least a first direction. The vehicle includes a drive wheel mounted to one of the first and second chassis sections and an omni-wheel mounted to the other of the first and second chassis sections. The omni-wheel is mounted at an angle orthogonal with respect to the drive wheel. The hinge joint rotates in response to the curvature of a surface the vehicle is traversing.
摘要:
The present invention relates to a multidirectional wheel, wherein the wheel has a wheel body rotatable about a wheel axle and having two half-shells and has a plurality of rotating bodies which are located at the outer periphery of the wheel body and via which the wheel can roll off, wherein at least one half-shell, and preferably both half-shells, has/have mounts in which end regions of the axles of the rotating bodies are received or which project into end regions of the axles of the rotating bodies, wherein the mounts of the half-shells are configured as continuously converging.
摘要:
A magnetic wheel includes: a balance block; a magnetic body which is provided in the balance block and attaches the balance block to an attachment object with a magnetic force; and a magnetic shielding block which is provided in the balance block and guides a magnetic field generated in the magnetic body toward the attachment object.
摘要:
A mecanum-wheeled vehicle (1), in particular for transporting a load, comprising a chassis (5) extending along a longitudinal axis (L) and a width axis (B) oriented perpendicular to the same, said chassis comprising at least four mecanum wheel drives (2; 2a to 2d) which can be controlled via control means (13) for carrying out an omnidirectional operation of the mecanum-wheeled vehicle (1), wherein the chassis (5) has a first chassis section (21a) with at least two (2a, 2b) of the mecanum wheel drives (2; 2a, 2b, 2c, 2d) and a second chassis section (21b) with at least two (2c, 2d) of the mecanum wheel drives (2; 2a, 2b, 2c, 2d). According to the invention, the first and the second chassis sections (21a, 21b) are arranged adjacent along a first adjustment axis (E1) and are mechanically connected to one another such that the spacing between same can be varied, and the spacing between the first and second chassis sections (21a, 21b) is adjustable along a first adjustment axis (E1) by controlling at least one of the mecanum wheel drives (2; 2a, 2b, 2c, 2d) of the first chassis section (21a) and/or of the second chassis section (21b) by means of the control means (13).
摘要:
An air-less tire has, formed on a tread ring: tread rubber for forming a ground contact surface; an outer reinforcement cord layer provided nearest the tread rubber; an inner reinforcement cord layer provided inside the outer reinforcement cord layer in the radial direction of the tire; and a shear rubber layer provided between the outer reinforcement cord layer and the inner reinforcement cord layer. The outer reinforcement cord layer includes: a first cord layer having first cords arranged tilted relative to the circumferential direction of the tire; and a second cord layer provided outside the first cord layer in the radial direction of the tire and having second cords arranged tilted relative to the circumferential direction of the tire in the direction opposite the direction in which the first cords are tilted. The inner reinforcement cord layer includes a third cord layer having third cords arranged parallel to the circumferential direction or the axial direction of the tire.
摘要:
A multidirectional wheel for traversing a surface that includes a hub having a first axial direction of rotation. A plurality of rollers are disposed around an outer periphery of the hub. The rollers are mounted for rotation in a second axial direction that is at an angle to the first axial direction. The wheel includes at least one magnet that is mounted to the hub. The hub is made of a magnetically inducible material that concentrates the flux of the at least one magnet toward the surface being traversed. A method for traversing a magnetically inducible surface using the multidirectional wheel is further provided.
摘要:
A multidirectional wheel for traversing a surface that includes at least one hub is provided. The hub defines a first axial direction of rotation. A plurality of rollers are disposed around an outer periphery of the hub. The rollers are mounted for rotation in a second axial direction that is at an angle to the first axial direction. The wheel includes at least one magnet that is mounted to the hub. The hub is made of a magnetically inducible material that concentrates the flux of the at least one magnet toward the surface being traversed.
摘要:
A wheel for a non-motorized vehicle (e.g., a shopping cart) can include a housing assembly and a tread assembly. The housing assembly can be configured to sealingly house electronics or other components. The tread assembly can removably mate with the housing assembly such that the electronics or other components remain closed and/or sealed within the housing assembly when the tread assembly is mated or unmated with the housing assembly.
摘要:
A number of variations may include a foldable scooter comprising a first frame component, wherein the first frame component comprises a steering column and a handlebar, wherein the steering column is integrated with an electric drive unit speed controller which is constructed and arranged to operatively control a removeable electric drive module; a second frame component, wherein the second frame component is rotatably attached to the first frame component so that the first frame component can fold onto the second frame component and wherein the second frame component includes a deck; a front wheel operatively connected to the first frame component; and a rear wheel operatively connected to the second frame component.