Abstract:
A vehicle climate control system includes a thermal-adsorption heat pump driven by engine exhaust heat, the heat pump including two adsorbers asynchronously switching between adsorbing and desorbing modes, each adsorber coupled with a corresponding antifreeze tank via a plurality of refrigerant-containing wick chambers. Cold heat transfer fluid (HTF) flows through the adsorber during the adsorbing mode which causes evaporation of refrigerant from the wick chambers, thereby cooling antifreeze, whereas hot HTF flows through the adsorber during the desorbing mode which causes condensation of refrigerant at the wick chambers, thereby heating antifreeze. In this way, the thermal-adsorption heat pump may condition cabin air independent of engine coolant and without exerting a load on the engine.
Abstract:
A refrigeration arrangement for transportation vehicle cabins, of the type comprising an ammonia absorption cycle which includes a heat source, a rectifier section, a condenser section, an evaporator section, an absorber section, and from which the solution passes on into an accumulator and later returns to the heat source, using a fluid as a “carrier” for the heat which is generated or absorbed by the solution undergoing the cycle in a closed circuit, allowing for an optimal recovery efficiency of the heat generated between parts of the refrigeration process to improve the refrigeration of rooms, by means of said arrangement of a closed cooling fluid circuit and a refrigeration circuit which are independent from vehicle operation.
Abstract:
An in-vehicle absorption heat pump device comprises a regenerator; an in-vehicle heat source heating absorbent in the regenerator; a gas-liquid separator; a condenser condensing gas phase separated from the absorbent; an evaporator evaporating a condensate to form vapor; an absorber for bringing the relatively concentrated absorbent in liquid phase in contact with the gas phase to cause the absorbent to absorb the gas phase and be relatively diluted; an absorbent circulation source circulating the absorbent; a bypass passage connecting a liquid-phase storing portion of the gas-liquid separator and the regenerator while bypassing the absorber; and a bypass transfer source in the bypass passage returning the absorbent in the gas-liquid separator to the regenerator. To dilute absorbent in the absorber, a diluent passage allows the condenser and the absorber to communicate and the condensate in the condenser to be supplied to the absorber through the diluent passage by a dilution element.
Abstract:
A vehicle has a driving apparatus that includes at least one propulsion device, a driving device that applies a force and/or a torque to the propulsion device, and an energy conversion device that receives energy from the driving device. A first energy storage device that stores energy is also included. The driving apparatus assumes a first operating state where a force and/or a torque is applied to the propulsion device by the driving device or a second operating state in which a force and/or a torque are applied to the driving device by the propulsion device. Under predefined conditions, a second energy storage device supplies energy to at least one driving device and the first energy storage device supplies energy to the second energy storage device.
Abstract:
A vehicle air conditioner includes a first heat exchanger, wherein air around the first heat exchanger is supplied into a vehicle compartment, a heat storage unit, an in-vehicle circuit that connects between the first heat exchanger and the heat storage unit, a second heat exchanger, wherein air around the second heat exchanger is sent outside a vehicle, a vehicle system, wherein the vehicle system generates exhaust heat, an out-vehicle circuit, a connection circuit that connects between the in-vehicle and the out-vehicle circuits, a plurality of valves operating so that the in-vehicle circuit and the out-vehicle circuit are connected or disconnected from each other through the connection circuit and a control device for controlling states of the valves.
Abstract:
Air conditioning system with an absorption compressor designed for cooling car cabin. The system is utilizing heat energy from a vehicle exhaust gas. The absorption compressor is an oil-Freon absorption device and it works in parallel with the conventional mechanical compressor.
Abstract:
The invention concerns an absorption cooling system for a motor vehicle using water as coolant and an absorbent. Said system comprises a circuit designed to ensure circulation of the coolant, when the engine is stopped, from the evaporator (3) to the absorber (4) passing through the electromagnetic valve (10) through the continued operation of the evaporator pump (7) for a predetermined duration and through maintaining the electromagnetic valve (10) in open position after the engine has stopped for another predetermined duration before it is closed. The evaporator pump (7) is kept in operation upon closure of the electromagnetic valve (10) so as to allow the coolant to circulate in the circuit from the evaporator (3) to the boiler (1) passing through the exchanger (6). Said system enables, when the engine is stopped, the zones containing residual deposits of absorbent to be diluted thereby preventing crystallization of said residual deposits.
Abstract:
The air-conditioning system comprises at least one sensor of the thermal comfort of the passenger compartment of a motor vehicle, and an apparatus having at least one pair of heat-exchanger units, each designed to increase and reduce said temperature at alternating intervals under the control of the sensor. Each heat-exchanger unit comprises a substrate having the property of absorbing and releasing heat according to the absorption of a gas. The two substrates are set in two hermetic casings in communication with one another through a compressor and a series of valves, which can be actuated so as to transfer the gas alternately from one to another of the two substrates. Each heat-exchanger unit also comprises an outlet conveyor with an outlet opening to the passenger compartment and another outlet opening towards the outside. The two outlets are controlled by hatches that can be actuated intermittently so as to send hot air or cold air continuously into the passenger compartment.
Abstract:
In a cooling apparatus, air within a room is first introduced into a radiator-type adsorber 1, where moisture contained in the air is adsorbed by A-type silica gel. The resulting low-humidity air is subsequently introduced into a desorption cooler 5, where moisture is desorbed from B-type silica gel, thereby humidifying and cooling the air. The resulting low-temperature air is then used for cooling. When a cooling capacity of the cooling apparatus is lowered, air from a heat source is introduced into the radiator-type adsorber 1, where the moisture is desorbed from the A-type silica gel, thereby recovering the adsorbability thereof. The high-humidity air resulting from the desorption of the moisture is subsequently introduced into the desorption cooler 5, where the moisture contained in the air is adsorbed by the B-type silica gel, thereby recovering the desorption cooling capacity thereof.
Abstract:
A ventilation system for an absorption refrigerator having a condenser and an absorber and located in a slide-out room of a recreational vehicle. The ventilation system includes a generally vertical air passage in which the condenser and the absorber are located, a lower vent for the intake of ambient air into the air passage, an upper vent for exhausting heated air from the air passage, and an air assist system for forcing air flow through the air passage only when the temperature of the ambient air is too high for an efficient natural draft. Both the lower and upper vents are in the side wall of the slide-out room. The air assist system includes a blower positioned to promote airflow within the air passage over the condenser and the absorber, a temperature activated thermal switch positioned to sense ambient temperature and adapted to energize the blower only when the ambient temperature is above a predetermined value, and a power switch connected in series to the thermal switch to activate and deactivate the system. The power switch is preferably adapted to automatically activate and deactivate the system when the refrigerator is turned on and off respectively.