Abstract:
A guide rail assembly for moving a closure panel of a motor vehicle between an open position and a closed position includes a guide rail fixedly secured to the motor vehicle. A slide mechanism slidably engages the guide rail. A rod has one end coupled to the slide mechanism and an opposing end coupled to the closure panel to move the closure panel as the slide mechanism slides along the guide rail. A drive is fixedly secured to the guide rail for selectively driving the slide mechanism along the guide rail. A clasp is operatively secured to the slide mechanism for selectively coupling the drive to the slide mechanism such that the drive moves the slide mechanism along the guide rail to move the closure panel between the open and closed positions when the slide mechanism is coupled with the drive.
Abstract:
A folding leaf gate comprising a post hung section hingedly attachable to a gate post and at least one leaf hung section hingedly connected in series with the post hung section by means of one or more section hinges, wherein the folding leaf gate additionally includes a rotating device associated with the or each leaf hung section and sharing a common axis of rotation with the or each section hinge and secured in a static relationship to a leaf hung section whereby rotation of the or each rotating device causes rotation of a leaf hung section about the or each section hinge, and one or more translating devices engaging the or each rotating devices, the one or more translating device being configured, when in use, to translate rotational motion of the post hung section about a gate post to rotation of the one or more rotating devices whereby simultaneously to open a gateway closed by the folding leaf gate and fold the folding leaf gate in two or more.
Abstract:
A drive unit for a power operated vehicle closure has a track, a guide moveable along the track, a link attached to the guide at one end and adapted to be attached to the vehicle closure at the opposite end, and a motor assembly for moving the guide along the track. The motor assembly has an electric motor and a speed reducer driven by the electric motor that has a first stage and a second stage. The first stage includes a belt drive and the second stage is a spur gear set. Alternatively the first stage is a worm gear and a mating helical gear. The worm gear preferably has a high lead angle and a high number of leads. The speed of the electric motor is reduced to about 1000 rpm or less in the first stage permitting the use of spur gears in the second stage while retaining quiet operation.
Abstract:
A drive mechanism is provided for a door operator, comprising a drive member and a driven member. The drive member includes a protrusion, the edges of the protrusion forming first and second driving surfaces which define a free space of at least about 90° there between. The driven member includes a protrusion, the sides of the protrusion form a first and a second driven surface, respectively. The drive member is adapted to be operably connected to between a motor assembly for rotating the drive member and a door closer assembly rotating with the driven member. The drive member and the driven member are disposed for relative rotation in substantially the same plane such that the driven member protrusion moves in the free space defined by the driving surfaces of the drive member protrusion. Rotation of the drive member from a first angular orientation to a second angular orientation in a direction toward an adjacent driven surface causes rotation of the driven member for powered opening of the door from the closed position to the open position. The driven member protrusion moves in the free space without engaging the protrusion surfaces when the door is opened manually from the closed position and allowed to close.
Abstract:
A door driving-mechanism torque transmission (20, 40, or 50) for transmitting torque from a door-driving motor assembly, especially a geared motor (36), to a shaft (33) connected to a door panel (31). A driving component rotates around an axis and can be engaged with the door-driving motor assembly. A driven component rotates around another axis and can be engaged with the shaft. A bearing assembly accommodates both components mounted on separated axes of rotation. There is a coupling connection (2) between both components. The object is to promote smooth operation and decrease frequency of repair. The bearing assembly (4 or 51) is accordingly provided with a driving-component bearing half (5 or 52) that the driving component (1) is mounted on and with, separated therefrom, a driven-component bearing half (6 or 53) that the driven component (3) is mounted on. The bearing halves (5 & 6 or 52 & 53) are connected elastically for the purpose of attenuating torsional vibrations and impacts. The invention also concerns a motorized door-driving mechanism provided with such a torque transmission as well as a door provided therewith.
Abstract:
A door driving-mechanism torque transmission (20, 40, or 50) for transmitting torque from a door-driving motor assembly, especially a geared motor (36), to a shaft (33) connected to a door panel (31). A driving component rotates around an axis and can be engaged with the door-driving motor assembly. A driven component rotates around another axis and can be engaged with the shaft. A bearing assembly accommodates both components mounted on separated axes of rotation. There is a coupling connection (2) between both components. The object is to promote smooth operation and decrease frequency of repair. The bearing assembly (4 or 51) is accordingly provided with a driving-component bearing half (5 or 52) that the driving component (1) is mounted on and with, separated therefrom, a driven-component bearing half (6 or 53) that the driven component (3) is mounted on. The bearing halves (5 & 6 or 52 & 53) are connected elastically for the purpose of attenuating torsional vibrations and impacts. The invention also concerns a motorized door-driving mechanism provided with such a torque transmission as well as a door provided therewith.
Abstract:
An operator for opening and closing movable barriers such as garage doors comprising a pass point limit system which is a component of an operating head. The operator is responsive to remote control from a wall panel or other location remote from the operating head to enable setting and adjustment of door travel limits from a remote location, without requiring installation of limit switches separate from the operating head.
Abstract:
A garage door opener apparatus (10) with a transfer mechanism (50) is described. The transfer mechanism includes motor sprocket (59), chain (52, 52A), drive sprocket (53, 53A), shaft (54, 54A), driven sprocket (64, 64A) and chain (65, 65A) connected to a carriage assembly (20). The transfer mechanism enables positioning of the apparatus in a building (100) with an obstruction such as a beam (102) and safely allows transfer of the rotation of the motor sprocket to the door (101).
Abstract:
An automatic overhead door opening system for a transport container whereby to operate the displacement of a panel door from a closed position to an open position. The system is housed in a restrained size housing which incorporates a motorized drive for driving an endless chain associated with an elongated central guide track on which the door is guidingly attached. The motorized drive is comprised of two small d.c. motors each having a drive gear drivingly coupled to a common driven gear of a gear drive which includes a worm gear in meshing engagement with a driven sprocket connected to a drive sprocket to displace the endless chain. The housing is of reduced thickness and access to the interior of the housing is provided through a non-obstructed removable bottom wall plate and accordingly it is not necessary to disconnect the endless chain and drive sprocket to have access to the components of the system. The drive can also be operated from the cabin of a motorized vehicle incorporating a transport container or remotely from a hand-held transmitter unit or by a control secured to an outside wall of said box and energized from inside the cab by authorized operator.
Abstract:
A manually operable carousel revolving door having a locking element with a rotary axle disposed inside. The door comprises a braking motor, a rotational speed detector and a rotation direction detector, all actively connected to the locking element. If the door rotates at a speed above a predetermined rate or in a wrong direction, the rotation speed detector and the rotation direction detector signals the braking motor to act on the rotary axle of the locking element to slow the rotation rate of the door. The braking motor can be disposed in a receptacle in the top side covering in the revolving door. In addition, the braking motor can be connected to the rotary axle via a chain drive or a toothed gear drive.