Abstract:
A cooling system may include a desiccant wheel with a first section and a second section. An intake air supply may be connected to the first section, and an exhaust air supply may be connected to the second section. A heat pump may be provided and include a compressor, a first condenser, a second condenser, a third condenser, an expansion device, a control valve, and an evaporator. A high temperature fluid line may be provided and include a solar panel, a fluid tank, and at least one heat exchanger. One of the second condenser and the third condenser may provide heat to the fluid tank of the high temperature fluid line. The first condenser and the at least one heat exchanger may be disposed in the exhaust air supply to heat air which regenerates desiccant material as it passes through the second section. The regenerated desiccant material removes moisture from the intake air passing through the first section.
Abstract:
The invention provides a process for controlling the moisture content of a supply gas for use in drying a product, which process comprises the steps of: (a) providing the supply gas; (b) optionally heating the supply gas; (c) determining the temperature and the moisture content of the supply gas; (d) contacting the supply gas with a rotating desiccant wheel, whereby the rotating speed of the desiccant wheel is controlled by means of the data on the temperature and the moisture content as obtained in step (c) in combination with the corresponding sorption isotherm of the desiccant; and (e) recovering the dehumidified supply gas as obtained in step (d). The invention further provides a dehumidified gas obtainable by said process, a dehumidifier system, a process for drying a product comprising bringing the product into contact with a dehumidified gas as obtained in accordance with the invention, and a product obtainable by said drying process.
Abstract:
The invention provides a process for controlling the moisture content, of a supply gas for use in drying a product, which process comprises the steps of: (a) providing the supply gas; (b) optionally heating the supply gas; (c) determining the temperature and the moisture content of the supply gas; (d) contacting the supply gas with a rotating desiccant wheel, whereby the rotating speed of the desiccant wheel is controlled by means of the data on the temperature and the moisture content as obtained in step (c) in combination with the corresponding sorption isotherm of the desiccant; and (e) recovering the dehumidified supply gas as obtained in step (d). The invention further provides a dehumidified gas obtainable by said process, a dehumidifier system, a process for drying a product comprising bringing the product into contact with a dehumidified gas as obtained in accordance with the invention, and a product obtainable by said drying process.
Abstract:
Disclosed is an air conditioning apparatus which is provided with two adsorption elements (81, 82). The air conditioning apparatus repeats in alternation an operation in which the second adsorption element (82) is regenerated and, at the same time, air is dehumidified by the first adsorption element (81), and an operation in which the first adsorption element (81) is regenerated and, at same time, air is dehumidified by the second adsorption element (82). Additionally, the air conditioning apparatus includes a refrigerant circuit. The refrigerant circuit performs a refrigeration cycle in which a regenerative heat exchanger (92) operates as a condenser and a first cooling heat exchanger (93) or a second cooling heat exchanger (94) operates as an evaporator. For example, air, which has robbed heat of adsorption in the first adsorption element (81), is further heated by the regenerative heat exchanger (92) and is introduced into the second adsorption element (82). Consequently, the second adsorption element (82) is regenerated.
Abstract:
A dehumidifying element includes a super absorbing polymer (SAP), and a hygroscopic base, thereby maintaining hygroscopic characteristics regardless of aging and a high humidity absorbing rate and needing a smaller amount of energy for regeneration.
Abstract:
The present invention provides an apparatus for dehumidifying air supplied to an enclosed space by an air conditioning unit. The apparatus includes a partition separating the interior of the housing into a supply portion and a regeneration portion. The supply portion has an inlet for receiving supply air from the air conditioning unit and an outlet for supplying air to the enclosed space. A regeneration fan creates the regeneration air stream. The apparatus includes an active desiccant wheel positioned such that a portion of the wheel extends into the supply portion and a portion of the wheel extends into the regeneration portion, so that the wheel can rotate through the supply air stream and the regeneration air stream to dehumidify the supply air stream. A heater warms the regeneration air stream as necessary to regenerate the desiccant wheel. The invention also comprises a hybrid system that combines air conditioning and dehumidifying components into a single integrated unit.
Abstract:
An improved dehumidification system for automotive use includes a rotating, wheel like heat exchanger with axially open cells that carry a water adsorbing material. Opposed ambient air and heated air flows, covering opposite halves of the wheel, continually adsorb water on one side and are recharged on the other side. Alternating radially closed cells between the axially open cells carry no desiccant material, but receive a cross cooling flow, on the water adsorbing side of the wheel only, to remove the heat released during the water adsorption process. The desiccant recharging process on the other side of the wheel is not disturbed by the cross cooling flow.
Abstract:
A regenerator energy exchange device comprises an energy recovery wheel having interchangeable segments of a heat and moisture exchange matrix material. Each segment may include one or more desiccants having different moisture adsorption characteristics deposited thereon. Alternatively, the energy recovery wheel may contain a matrix which is uniformly coated with at least two different desiccants. In still another embodiment, the wheel may have zones of different desiccants or desiccant combinations which are arranged in series in the direction of air flow through the matrix to provide different moisture adsorption characteristics along the air flow path. The zone closest to a highly humid airstream may contain, for example, a type 5 desiccant, while the zone closest to a conditioned exhaust airstream may contain a type 3 desiccant. All configurations are designed to increase the effectiveness of the energy recovery device over the middle to high range of relative humidities.
Abstract:
Sodalite is treated with acid to transform the surface to provide a highly macroporous material that demonstrates water swing capacities exceeding those of high performance, low temperature desiccants under high latent load at relatively high ambient temperature and humidities.
Abstract:
A compact and energy efficient air conditioning system is operated with a desiccant material having a high differential adsorption capacity even at lower regeneration temperatures than those in the conventional system. The desiccant assisted air conditioning system comprises a process air path (A) for flowing process air to adsorb moisture from the process air by a desiccant member, and a regeneration air path (B) for flowing regeneration air heated by a heat source to desorb moisture from the desiccant member (103). The desiccant member is arranged so that the process air or the regeneration air flows alternatingly through the desiccant member. The desiccant member is arranged so that the process air or the regeneration air flows alternatingly through the desiccant member. The desiccant member comprises an organic polymer material, the organic polymer material comprising an amphoteric ion exchange polymer having an anion exchange group, a cation exchange group and bridging ligands, thereby exhibiting a high differential adsorption capacity.