Abstract:
The partial discharge noise separation method uses Independent Component Analysis (ICA) for de-noising partial discharge (PD) test signals having a noise signal component and a partial discharge component. Assuming that the noise signal component and the PD signal component are both statistically independent of each other and non-Gaussian, the ICA algorithm separates the noise component from the PD signal component from two partial discharge test signals acquired from two separate couplers per phase that are connected to the windings of a three-phase rotating machine.
Abstract:
A transient detection circuit coupled between a first power line and a second power line and including a first control unit, a setting unit, and a voltage regulation unit. The first control unit generates a first control signal. The first control signal is at a first level when an electrostatic discharge (ESD) event occurs. The first control signal is at a second level when the ESD event does not occur. The setting unit sets a first node. The first node is set at the second level when the first control signal is at the first level. The voltage regulation unit regulates the first node. The voltage regulation unit regulates the level of the first node at the second level when the first control signal is at the second level.
Abstract:
Embodiments of an integrated circuit that includes a debug circuit are described. This debug circuit is configured to test an asynchronous circuit by performing analog measurements on asynchronous signals associated with the asynchronous circuit, and includes a triggering module configured to gate the debug circuit based on one or more of the asynchronous signals. This triggering module has a continuous mode of operation and a single-shot mode of operation. A timing module within the debug circuit has a timing range exceeding a pre-determined value, and is configured to provide signals corresponding to a first time base or signals corresponding to a second time base. Furthermore, control logic within the debug circuit is configured to select a mode of operation and a given time base for the debug circuit, which is either the first time base or the second time base.
Abstract:
An ultrafast sampler includes a series of Schottky diodes configured with a coplanar waveguide to form a nonlinear transmission line (NLTL) that compresses a local oscillator input to form a series of strobe pulses. Strobe pulses of opposite polarity are capacitively coupled to sampling diodes to obtain samples of a signal applied to a signal input. The samples are directed along an intermediate frequency waveguide to, for example, a signal processor such as an oscilloscope, for storage and analysis. The intermediate frequency waveguide is configured so that conductors of the intermediate frequency waveguide receive signal samples of a common polarity and strobe samples of opposite polarities so that portions of strobe pulses delivered to a signal processor are distinguished from signal samples. In an embodiment, the intermediate frequency waveguide and the strobe waveguide are symmetrically situated along a common axis, and conductors of the strobe waveguide are positioned between the axis and the conductors of the intermediate frequency waveguide. The sampling circuit is defined on a GaAs substrate and a coaxial-to-airline-to-substrate transition is configured to deliver signals from a coaxial cable to the sampling circuit. A signal output is configured to direct the signal back into a coaxial cable.
Abstract:
A system (10) is provided herein for monitoring the harmonic content of the RF signal delivered to an RF powered device (13). The system comprises (a) a voltage transducer (16) adapted to sample the voltage of the RF signal and to output a first signal representative thereof, (b) a current transducer (17) adapted to sample the current of the RF signal and to output a second signal representative thereof, and (c) a memory device (67) in communication with at least one, and preferably both, of the aforementioned transducers 16 and 17 and which contains calibration information specific to the transducers.
Abstract:
A sampling circuit for sequential sampling of a broadband periodic input signal having a field effect transistor as a nonlinear component to which a pulsed-shaped sampling signal is supplied, by which sampling is activated so that an output signal is produced. In this way, a sampling circuit is attained which is economical, technically durable and which can be used in a versatile and simple manner.
Abstract:
A sampling device for high frequency signal that propagates in a propagation structure. The device comprises a first stage (A1, I1, C1) to sample a first signal at a first time t1 and at least one second stage (A2, I2, C2) in series with the first stage to take a second sample representative of the first sample, starting from the first sample, taken at a second time t2 greater than t1, the life-time of the second sample being longer than the life-time of the first sample.
Abstract:
A system and method are described for receiving differential currents in a current mode circuit. When conditions occur where the receiver inputs are floating, undriven, shorted together, or one or both shorted to ground, the output of the system remains stable. Diode connected MOS transistors receive the unequal currents, and current mirrors amplify the received currents. Those amplified mirrored currents are differentially amplified and converted into voltage signals suitable of typical computer and logic systems. The current mode differential nature of the invention provides high common mode current and voltage noise immunity. A threshold for the unequal currents helps provide high differential current and voltage noise immunity.
Abstract:
A system and method are described for receiving differential currents in a current mode circuit. When condition occur where the receiver inputs are floating, undriven, shorted together, or one or both shorted to ground, the output of the system remains stable. Diode connected MOS transistors receive the unequal currents, and current mirrors amplify the received currents. Those amplified mirrored currents are differentially amplified and converted into voltage signals suitable of typical computer and logic systems. The current mode differential nature of the invention provides high common mode current and voltage noise immunity. A threshold for the unequal currents helps provide high differential current and voltage noise immunity.
Abstract:
A cable includes an inner conductor, an inner dielectric, and a guard conductor, where the inner dielectric is between the inner conductor and the guard conductor. The cable also includes an outer dielectric, and a shield conductor, where the outer dielectric is between the guard conductor and the shield conductor. The cable further includes an additional layer of material between the outer dielectric and the shield conductor of suitable composition for reducing triboelectric current generation between the outer dielectric and the shield conductor to less than that which would occur were the outer dielectric and the shield conductor to directly adjoin each other.