Abstract:
According to one aspect, the invention relates a spectral band-pass filter, which is optimized for the transmission of an incident wave at at least a first given central wavelength λ0, and which includes: a metal grating having a thickness (t) greater than approximately λ0/50 and including at least a first set of substantially identical, parallel slots having a width (W) less than around λ0/10, and being spaced apart periodically or quasi-periodically according to a first period that is less than said first central el wavelength, a layer of dielectric material having a thickness (h) and a given refractive index (ng), which is coupled to the metal grating to form a waveguide for the waves diffracted by the grating, said first period of the grating being designed such that only orders 0 and ±1 of a wave having normal incidence and a wavelength λ0 are diffracted in the layer of dielectric material, the assembly of the dielectric layer and grating being suspended, during use, in a fluid having a refractive index of close to 1.
Abstract:
An optical filter includes a light-shielding conductive layer provided with a plurality of apertures on a substrate surface that selectively transmits light of a first wavelength, and a dielectric layer in contact with the conductive layer. A size of the apertures is a size equal to or less than the first wavelength, and a ratio of a surface area of the conductive layer to a surface area of the substrate surface is within a range of equal to or greater than 36% and equal to or less than 74%. A transmissivity of the first wavelength is increased by surface plasmons induced in the apertures by light falling on the conductive layer.
Abstract:
The present invention provides a method for preparing a conductive pattern, comprising a pattern forming step of forming a conductive pattern on a substrate; and a blackening processing step of blackening the surface of the conductive pattern by immersing the conductive pattern in an aqueous solution containing reducing metal ions to oxidize the surface of the conductive pattern, and a conductive pattern prepared therefrom.
Abstract:
An optical sensor and method for use with a visible-light laser excitation beam and a Raman spectroscopy detector, for detecting the presence chemical groups in an analyte applied to the sensor are disclosed. The sensor includes a substrate, a plasmon resonance mirror formed on a sensor surface of the substrate, a plasmon resonance particle layer disposed over the mirror, and an optically transparent dielectric layer about 2-40 nm thick separating the mirror and particle layer. The particle layer is composed of a periodic array of plasmon resonance particles having (i) a coating effective to binding analyte molecules, (ii) substantially uniform particle sizes and shapes in a selected size range between 50-200 nm (ii) a regular periodic particle-to-particle spacing less than the wavelength of the laser excitation beam. The device is capable of detecting analyte with an amplification factor of up to 1012-1014, allowing detection of single analyte molecules.
Abstract:
A terahertz band optical filter having a dielectric multilayer periodic structure in which a plurality of dielectric materials are periodically layered. Multi-cavity layers each having an optical path length of n times λ/2 (n is an integer greater than or equal to 1) and made of a low-refractive index medium are arranged. The cavity layers are coupled using a single-layer coupling layer having an optical path length λ/4 and made of a high-refractive index medium, thus forming a multi-cavity structure. Matching layers each including a high refractive index layer and a low refractive index layer each having an optical path length of λ/4 are disposed at either end of the multi-cavity structure.
Abstract:
The present invention provides a method for preparing a conductive pattern, comprising a pattern forming step of forming a conductive pattern on a substrate; and a blackening processing step of blackening the surface of the conductive pattern by immersing the conductive pattern in an aqueous solution containing reducing metal ions to oxidize the surface of the conductive pattern, and a conductive pattern prepared therefrom.
Abstract:
An optical filter of a plasma display panel (PDP) and its fabrication method are disclosed. The optical filter includes an electromagnetic wave shield layer having a bias angle formed by cutting a mesh film along a predetermined direction.
Abstract:
An electromagnetic-wave shielding and light transmitting plate 1 comprising an antireflection film 3, an electromagnetic-wave shielding film 10, a transparent substrate 2, and a near-infrared ray blocking film 5, wherein they are laminated and united by using intermediate adhesive layers 4A, 4B and a pressure-sensitive adhesive 4C, and the peripheries thereof are covered by a conductive sticky tape 7. The electromagnetic-wave shielding film 10 has a conductive foil 11 formed by pattern etching on a substrate film 13, is processed to have antireflection function by forming a light absorbing layer 12 on the conductive foil 11, and is subjected to a matting process to form small irregularities by roughening the surface of the light absorbing layer 12. A display panel is manufactured by bonding this electromagnetic-wave shielding film 10 to the front surface of a plasma display panel body. Accordingly, an electromagnetic-wave shielding and light transmitting plate and a display panel can be obtained which not only have excellent electromagnetic-wave shielding function but also provide high antireflection effect and have high level of transparency and high level of visibility, thereby providing distinct images.
Abstract:
The UV, deep UV and/or far UV (ultraviolet) filter transmission spectrum of an MPSi spectral filter is optimized by introducing at least one layer of substantially transparent dielectric material on the pore walls. Such a layer will modify strongly the spectral dependences of the leaky waveguide loss coefficients through constructive and/or destructive interference of the leaky waveguide mode inside the layer. Increased blocking of unwanted wavelengths is obtained by applying a metal layer to one or both of the principal surfaces of the filter normal to the pore directions. The resulting filters are stable, do not degrade over time and exposure to UV irradiation, and offer superior transmittance for use as bandpass filters. Such filters are useful for a wide variety of applications including but not limited to spectroscopy and biomedical analysis systems.
Abstract:
A filter for a display apparatus and a plasma display apparatus comprising the filter are provided. The filter for the display apparatus has a structure in that an anti-reflection layer is formed on a front surface of one base film layer and an electromagnetic interference shielding layer is formed on a rear surface of the base film layer. Further, the filter for the display apparatus includes an adhesive layer having various functions. A ground member is formed at an edge surface of the electromagnetic interference shielding layer. Accordingly, the functions of the filter for the display apparatus and the functions of the plasma display apparatus comprising the filter improve efficiently. The manufacturing cost decreases and the manufacturing yield increases.