Abstract:
An optical frequency converter using reciprocating modulation includes a device that, taking n as a predetermined integer of 1 or more, modulates light of a predeternined frequency to produce an nth order sideband group thereof, a device that modulates the nth order sideband group to produce an (nnull1)th order sideband group, and a device that selects a specific sideband from a plurality of sideband groups.
Abstract:
Techniques for directly converting an electrical signal into an optical signal by using a whispering gallery mode optical resonator formed of a dielectric material that allows for direct modulation of optical absorption by the electrical signal.
Abstract:
A reciprocating optical modulation system includes a device that modulates light of a predetermined frequency by an integer multiple n to produce a group of nth order sidebands thereof; a device that modulates the nth order sidebands to produce (nnull1)th order sidebands; and a device that selects at least part of the (nnull1)th order sidebands.
Abstract:
An optical signal scrambler (18) has an optical phase modulator (22) which has a common input/output for an optical signal. The modulator also has an input for a modulating signal and a common output/input which is coupled to a 45° Faraday mirror (24). The scrambler (18) operates to modify an optical input signal received at the input/output of the modulator (22) so that it is returned as an output which is phase scrambled.
Abstract:
An optical modulator is provided to control the intensity of a transmitted or reflected light. In a transmission mode, a separator splits arbitrarily polarized light into two polarization rays and one is made to travel a separate path from the other. A recombiner causes the two rays to recombine at an output unless an electro-optic phase retarder changes the polarization of the two rays, in which case, both of them miss the output by an amount which is a function of the voltage on the retarder. A normally-off version with low polarization mode dispersion is obtained by changing the orientation of the recombiner. A normally-on version with low polarization mode dispersion is obtained with a passive polarization direction rotator. Similar results can be obtained in a reflection mode where the input and output are on the same side of the modulator. Versions using a GRIN lens are particularly suited to modulation of light out of and back into fiber-optic cables. The device can be operated as a variable optical attenuator, an optical switch, or a high speed modulator and is insensitive to polarization of the input light. A preferred material for the phase retarder is a hot-pressed ceramic lead lanthanum zirconate titanate composition.
Abstract:
A fiberoptic liquid crystal on-off switch and variable attenuator is provided. The end facets of two optical fiber cores in a sleeve, a birefringent crystal, a quarter-pitch GRIN lens, a liquid crystal cell and a mirror element are arranged and oriented with respect to each other so that light from the first optical fiber core passes through, and back from, the first birefringent crystal, the GRIN lens, the liquid crystal cell and the mirror element into the second optical fiber core when the liquid crystal cell is in a first state. When the liquid crystal cell is in an opposite second state, light from the first optical fiber core passes through, and back from, the first birefringent crystal, the GRIN lens, the liquid crystal cell and the mirror element, but not into the second optical fiber core. If voltages intermediate to those corresponding to the On and Off states are applied to the liquid crystal cell, the amount of light passing between the first and second optical fiber cores are proportionally controlled and the device operates as an attenuator.
Abstract:
An optical modulator is provided to control the intensity of a transmitted or reflected light. In a transmission mode, a separator splits arbitrarily polarized light into two polarization rays and one is made to travel a separate path from the other. A recombiner causes the two rays to recombine at an output unless an electro-optic phase retarder changes the polarization of the two rays, in which case, both of them miss the output by an amount which is a function of the voltage on the retarder. A normally-off version with low polarization mode dispersion is obtained by changing the orientation of the recombiner. A normally-on version with low polarization mode dispersion is obtained with a passive polarization direction rotator. Similar results can be obtained in a reflection mode where the input and output are on the same side of the modulator. Versions using a GRIN lens are particularly suited to modulation of light out of and back into fiber-optic cables. The device can be operated as a variable optical attenuator, an optical switch, or a high speed modulator and is insensitive to polarization of the input light. A preferred material for the phase retarder is a hot-pressed ceramic lead lanthanum zirconate titanate composition.
Abstract:
In one example, a device includes a bus waveguide to carry a light of a carrier wavelength, a first ring waveguide with a first modulator, a first heater to adjust a resonance wavelength of the first ring waveguide, and a second ring waveguide with a second modulator. The first ring waveguide and the second ring waveguide are coupled to the bus waveguide and are to modulate the light of the carrier wavelength to impart one of at least four optical power levels to the light. In another example, a device includes, a bus waveguide, a first ring waveguide with a first modulator, and a second ring waveguide with a second modulator. The first ring waveguide and the second ring waveguide are coupled to the bus waveguide and are to modulate a light of a carrier wavelength to impart one of at least four optical power levels to the light.
Abstract:
Transducers and methods of making the same include a substrate having a cavity with a diameter that supports whispering gallery modes at a frequency of an input signal. A focusing structure in the cavity focuses the electric field of the input signal. A resonator directly under the focusing structure has a crystalline structure that generates an electro-optic effect when exposed to electrical fields. An electric field of the input signal modulates an output signal in the resonator via the electro-optic effect.
Abstract:
Transducers and methods of making the same include a substrate having a cavity with a diameter that supports whispering gallery modes at a frequency of an input signal. A focusing structure in the cavity focuses the electric field of the input signal. A resonator directly under the focusing structure has a crystalline structure that generates an electro-optic effect when exposed to electrical fields. An electric field of the input signal modulates an output signal in the resonator via the electro-optic effect.