Abstract:
The invention relates to a cathode arrangement comprising: a thermionic cathode comprising an emission portion provided with an emission surface for emitting electrons, and a reservoir for holding a material, wherein the material, when heated, releases work function lowering particles that diffuse towards the emission portion and emanate at the emission surface at a first evaporation rate; a focusing electrode comprising a focusing surface for focusing the electrons emitted from the emission surface of the cathode; and an adjustable heat source configured for keeping the focusing surface at a temperature at which accumulation of work function lowering particles on the focusing surface is prevented.
Abstract:
A dispenser cathode which comprises an emission surface, a reservoir for material releasing, when heated, work-function-lowering particles, and at least one passage for allowing diffusion of work-function-lowering particles from said reservoir to said emission surface, said emission surface comprising at least one emission area and at least one non-emission area covered with emission-suppressing material and surrounding each emission area, said non-emission area comprising at least one passage connecting said reservoir with said non-emission area and debouching within a diffusion length distance from an emission area for allowing diffusion of work-function-lowering particles from said reservoir to said emission area.
Abstract:
A dispenser cathode which is comprises an emission surface, a reservoir for material releasing, when heated, work-function-lowering particles, and at least one passage for allowing diffusion of work-function-lowering particles from said reservoir to said emission surface, and emission surface comprising at least one emission area and at least one non-emission area covered with emission-suppressing material and surrounding each emission area, said non-emission area comprising at least one passage connecting said reservoir with said non-emission area and debouching within a diffusion length distance from an emission area for allowing diffusion of work-function-lowering particles from said reservoir to said emission area.
Abstract:
To obtain a cathode electrode (a cathode structure) where the electron beam spot diameter or size is reduced, the cathode driving voltage is lowered and the cathode current is stabilized for a long period, a recess or a region which does not radiate electron beams is formed near the central portion or near the outer circumference portion of an electrode radiation substance 9 of a cathode electrode 1, and hollow electron beams are obtained related to a cathode electrode, its manufacturing method, an electron gun and a cathode-ray tube.
Abstract:
A low power impregnated cathode consisting of a pallet, a cup, an inner sleeve, a cap, and an outer sleeve, is characterized in that the diameter of the pellet is less than at least one and half times of the thickness of the pellet, and is characterized in that an outer diameter of the bottom part of the outer sleeve is larger than an outer diameter of the top part thereof.
Abstract:
A cathode having a matrix body (1) impregnated with an alkaline earth compound, whose surface is provided with a top coat (2, 3, 4) comprising a high melting point metal, such as particularly tungsten, and scandium. A high emission at a low operating temperature and simultaneously a rapid recuperation after ion bombardment as well as a long lifetime are achieved in that the top coat comprises at least two layers of different composition, with a purely metallic layer (5, 6, 7) being provided on the impregnated matrix body (1), which layer comprises scandium and a high melting point metal such as particularly tungsten and/or rhenium, and in that a metallic layer of a high melting point metal such as particularly tungsten is provided as a sealing layer.
Abstract:
A method of manufacturing a dispenser cathode, in which method a powder of a refractory metal and a scandium-containing powder are mixed with each other and pressed to form a cathode body. According to the invention at least both these powders and a suitable binder are mixed with each other to form a homogeneous suspension prior to the pressing operation and the whole mixture is subsequently cured and ground to granules having a larger average size and hence a greater fluidity than the grains of the starting powders. Subsequently the granules thus obtained are pressed to form a cathode body (2). The invention leads to a better processibility and greater convenience of handling of the starting powders so that notably very fine staring powders can be used, which results in cathodes (1) having a better recovery after ion bombardment as compared with cathodes manufactured in conventional manners which are necessarily based on relatively coarse powders.