Abstract:
A low-pressure discharge lamp includes, in an exemplary embodiment, a light-transmissive envelope, a fill-gas composition capable of sustaining a discharge sealed inside the light-transmissive envelope, and a phosphor composition at least partially disposed on an interior surface of said light-transmissive envelope forming at least one phosphor layer. The phosphor composition includes at least one phosphor, and at least one amalgam-forming material.
Abstract:
A lamp includes a discharge vessel. Tungsten electrodes extend into the discharge vessel. An ionizable fill is sealed within the vessel. The fill includes a buffer gas and a halide component that includes a rare earth halide. A source of oxygen which includes a lanthanide oxide is present in the discharge vessel. The source of oxygen provides oxygen for a regenerative cycle which reduces blackening of the lamp walls by tungsten from the electrodes.
Abstract:
A lamp is operated with main and auxiliary amalgams. In accordance with one or more embodiments, a lamp includes an auxiliary amalgam-based material that releases mercury at an elevated temperature that is above an operating temperature of the lamp, and that absorbs mercury at temperatures below the elevated temperature. During a start-up period, the auxiliary amalgam-based material is heated to cause the material to release mercury for generating light in the lamp. After the start-up period, the auxiliary amalgam-based material is allowed to cool below the elevated temperature and absorb mercury, while the lamp continues to operate for generating light using a main amalgam.
Abstract:
A fluorescent lamp includes a tubular member or envelope having an arc generating and sustaining medium therein. An electrode is provided in each end of the tubular member and a phosphor coating is applied to the interior surface of the tubular member. A mercury dispenser is situated within the tubular member. The mercury dispenser includes a body composed of a material. The body is provided with a bore. A wire plated with a material capable of wetting mercury is provided in the bore. A quantity of mercury is deposited in the bore in contact with the wire.
Abstract:
Mercury dispensers (10; 20) having a highly reduced particle loss and containing a mixture of powders of a mercury releasing compound and of a plastic metal or alloy and optionally of a getter material are described. A mercury dispensing device (10:20) has a filiform cross-section, obtained by cutting a manufactured product having the same cross-section but a higher length, and comprises a metal container (11;21) and a mixture (12;22) of powders, comprised of at least one material suitable for releasing mercury by heating and a metal or a metal alloy, said mixture being arranged inside the container. Said metal or metal alloy has a Vickers hardness lower than 130 HV, its weight percentage is lower than the 10% of the total weight of the powders mixture and the size of the powders of said metal or alloy are not bigger than the size of the other powders of the mixture.
Abstract:
A method includes releasing mercury in devices requiring mercury, in particular fluorescent lamps. The method includes the use of manganese-mercury compositions.
Abstract:
Disclosed is a starter member to which a mercury-absorbing layer is applied and which can be used in low-pressure mercury discharge lamps. A starter member for a low-pressure amalgam discharge lamp comprises a mercury-absorbing layer on a base. A coating layer which is provided on the mercury-absorbing layer has a getter effect and prevents the material of the mercury-absorbing layer from coming off.
Abstract:
The invention relates to a discharge lamp, in particular a low pressure discharge lamp, with a discharge vessel (2) and a tubular piece (6) that is attached to the discharge vessel (2), with an Hg source (7) arranged in the tubular piece, and a cooling device (8) designed on the tubular piece (6) for dissipating the heat of at least the tubular piece that heats up during the operation of the discharge lamp (I).
Abstract:
A fluorescent lamp (10) includes a tubular member or envelope (12) having an arc generating and sustaining medium (15) therein. As known, the tubular envelope (12) is constructed of a suitable glass, for example lime glass. An electrode (14) is provided in each end of the tubular member (12) and a phosphor coating (16) is applied to the interior surface (18) of the tubular member (12). A mercury dispenser (20) is situated within the tubular member (12). The mercury dispenser (20) includes a body (21) composed of a material selected from the group consisting of glass and ceramic materials. The body (21) is provided with a bore (22). A first material (24) capable of wetting mercury coats the bore. In a preferred embodiment the first material (24) is silver having a thickness between 0.1μ and 8μ. A quantity of mercury (26) is deposited in the bore (22) in contact with the first material (24).
Abstract:
[Technical Field] A method and a device for artificially generating and showing an aurora.[Problems] To generate and change a true-to-life curtain-shaped discharge light emission by using a simple device.[Means for Solving Problems] As shown in FIG. 1, in a pressure-reduced chamber (1), two electrodes (2) are arranged in X direction and an electrode (3) is arranged in Z direction in such a manner that the two electrodes (2) oppose to the electrode (3) and they are apart from each other. A coil (6) generates a magnetic line of force (m) in the Z direction.[Main Use] Exhibition for public.