Abstract:
Disclosed is an additive for an electrochemical cell wherein the additive includes an N—O bond. The additive is most preferably included in a nonaqueous electrolyte of the cell. Also disclosed are cells and batteries including the additive, and methods of charging the batteries and cells. An electrochemical cell including the additive preferably has an anode that includes lithium and a cathode including an electroactive sulfur-containing material.
Abstract:
In order to provide a positive electrode for a secondary battery having a low electric resistance and a large mechanical strength, and a secondary battery capable of charge and discharge using a large current and having a large capacity and excellent in storage characteristics, there is used a positive electrode for a secondary battery comprising an active material layer at least comprising a radical compound and a carbon fiber in which a graphite structure has an average value of interlayer distances d002 in the range of not less than 0.335 nm and not more than 0.340 nm. Such a carbon fiber having the interlayer distance has a modulus of elongation in the range of not less than 200 GPa and not more than 800 GPa. Particularly the carbon fiber preferably has a volume resistivity in the range of not less than 200μΩ·cm and not more than 2000μΩ·cm. The carbon fiber is preferably a vapor-grown carbon fiber or a graphitized carbon fiber derived from a mesophase pitch as a precursor.
Abstract:
A battery capable of improving the safety when the battery is broken while securing the cycle characteristics is provided. The battery includes a cathode, an anode, and an electrolyte. The anode includes an anode active material layer that has a resin containing sulfur (S). Compared to a case not having the resin containing resin, a sufficient discharge capacity can be obtained even when charge and discharge is repeated, and smoking and ignition are not easily generated when the battery is broken. Thereby, the cycle characteristics are secured, and the safety when the battery is broken is improved.
Abstract:
The invention concerns novel ionic compounds with low melting point whereof the onium type cation having at least a heteroatom such as N, O, S or P bearing the positive charge and whereof the anion includes, wholly or partially, at least an ion imidide such as (FX1O)N−(OX2F) wherein X1 and X2 are identical or different and comprise SO or PF, and their use as solvent in electrochemical devices. Said composition comprises a salt wherein the anionic charge is delocalised, and can be used, inter alia, as electrolyte.
Abstract:
A nonaqueous secondary battery having a positive electrode having a positive electrode mixture layer, a negative electrode, and a nonaqueous electrolyte, in which the positive electrode contains, as an active material, a lithium-containing transition metal oxide containing a metal element selected from the group consisting of Mg, Ti, Zr, Ge, Nb, Al and Sn, the positive electrode mixture layer has a density of 3.5 g/cm3 or larger, and the nonaqueous electrolyte contains a compound having two or more nitrile groups in the molecule
Abstract translation:一种具有正极的非水系二次电池,其具有正极合剂层,负极和非水电解质,其中正极含有含有金属元素的含锂过渡金属氧化物作为活性物质,所述含锂过渡金属氧化物含有选自 由Mg,Ti,Zr,Ge,Nb,Al和Sn组成的正极合剂层的密度为3.5g / cm 3以上,非水电解液含有具有2个 或更多的腈基
Abstract:
A secondary battery, that has an excellent charge and discharge cycle characteristics, with a larger capacity, is provided. The secondary battery having a positive electrode, negative electrode and electrolyte, includes a polymer having a repeating unit represented by a formula (1) as an active material of at least one of positive electrode and negative electrode. According to formula (1), R1, R2, R3 and R4 each independently represents hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted aromatic hydrocarbons, substituted or unsubstituted hetroaromatic groups, halogen atom, or alkylene group that may be coupled to the ring form either one or both of R1 and R3, R2 and R4.
Abstract:
A rechargeable cell for operation at temperatures above from −40° C. to +120° C. which has a positive electrode comprising sulfur and/or organic and/or non-organic compounds (including polymer compounds) of sulfur as an electrode active material, and a negative electrode made of metal lithium or lithium alloys, and an electrolyte comprising a solution of one or more salts in one or more solvents.
Abstract:
To provide a process for producing a lithium-cobalt composite oxide for a positive electrode of a lithium secondary battery excellent in volume capacity density, safety, charge and discharge cyclic durability, press density and productivity, by using in expensive cobalt hydroxide and lithium carbonate. A mixture having a cobalt hydroxide powder and a lithium carbonate powder mixed so that the atomic ratio of lithium/cobalt would be from 0.98 to 1.01, is fired in an oxygen-containing atmosphere at from 250 to 700° C., and the fired product is further fired in an oxygen-containing atmosphere at from 850 to 1,050° C., or such a mixture is heated at a temperature-raising rate of at most 4° C./min in a range from 250 to 600° C. and fired in an oxygen-containing atmosphere at from 850 to 1,050° C.
Abstract:
An objective of this invention is to provide a proton-conducting polymer battery comprising an electrode containing a proton-conducting conductive compound as an active material and an aqueous electrolytic solution, which exhibits good battery properties and higher safety and higher reliability after reflow processing. There is provided a proton-conducting polymer battery in which protons are exclusively involved in charge/discharge, comprising a cathode, an anode, a separator and an electrolytic solution; wherein: the cathode and the anode are disposed facing each other via the separator in the electrolytic solution; electrode active materials in the cathode and/or the anode are selected from π-conjugated polymers and hydroxyl-containing polymers; and the electrolytic solution is an aqueous solution comprising sulfuric acid as an electrolyte and at least one of phosphoric acid and diphosphoric acid, wherein the concentration of the contained water is 65 wt % or less, and the concentration of the sulfuric acid is 3 wt % to 35 wt %.
Abstract:
The present invention relates to a method for producing a polymer/conductive carbon composite electrode comprising dehydration condensation polymerization of a tetramine derivative and a tetracarbonyl compound in the presence of an electrically conductive carbon material. The synthetized polymer comprises quinoxaline structural units such as polyphenyl quinoxaline (PPQ) and serves as an active material having proton conductivity. The composite material for electrode obtained by the method has a large capacity of inserting/releasing a proton and excellent in durability. An electrode comprising the composite material and a secondary battery comprising the electrode is excellent in safety and reliability high-speed current characteristics, has a longer life and a larger gravimetric energy density (Wh/kg).