Abstract:
A system and method for increasing transmission distance and/or transmission data rates using tedons and an encoding scheme to reduce the number of ones in a data signal is described. For example, the method for increasing transmission distance and transmission data rate of a fiber optical communications link using tedons includes the steps of encoding a data signal to be transmitted using an encoding scheme that reduces a number of ones in the data signal, transmitting the encoded data signal over the fiber optical communications link, receiving the encoded data signal and decoding the encoded data signal.
Abstract:
A modulator device for converting digital data into modulation of an optical signal includes an electronic input for receiving an input data word of N bits and an electrically controllable modulator for modulating the intensity of an optical signal, the modulator including M actuating electrodes where M≧N. An electrode actuating device, most preferably a digital-to-digital converter, operates actuating electrodes so that at least one electrode is actuated as a function of values of more than one bit of the input data word. According to an alternative, or supplementary, aspect of the invention, the set of electrodes includes at least one electrode having an effective area which is not interrelated to others of the set by factors of two. In one preferred implementation, a Mach-Zehnder modulator also provides phase modulation to give QAM functionality. Another implementation employs a semiconductor laser.
Abstract:
A system and method for generating an optical return-to-zero signal. The system includes an electro-optical conversion system. The electro-optical conversion system is configured to receive an input electrical non-return-to-zero signal, process information associated with the input electrical non-return-to-zero signal, and generate a first electrical signal and a second electrical signal based on at least information associated with the input electrical non-return-to-zero signal. Additionally, the electro-optical conversion system is configured to delay a second electrical signal with respect to the first electrical signal by a predetermined period of time, process information associated with the first electrical signal and the delayed second electrical signal, and generate an output optical return-to-zero signal based on at least information associated with the first electrical signal and the delayed second electrical signal. The output optical return-to-zero signal is an optical differential return-to-zero signal, and the output optical return-to-zero signal is substantially free from any frequency chirp.
Abstract:
A system and method for increasing transmission distance and/or transmission data rates using tedons and an encoding scheme to reduce the number of ones in a data signal is described. For example, the method for increasing transmission distance and transmission data rate of a fiber optical communications link using tedons includes the steps of encoding a data signal to be transmitted using an encoding scheme that reduces a number of ones in the data signal, transmitting the encoded data signal over the fiber optical communications link, receiving the encoded data signal and decoding the encoded data signal.
Abstract:
Multi-carrier modulation fiber optic systems constructed using a series of electrical carriers, modulating the data on the electrical carriers and combining the carriers to form a wideband signal. The wideband signal can then be intensity modulated on a laser and coupled to a fiber optic channel. A receiver may then receive the laser signal from the fiber optic channel and convert it into an electrical signal. Multi-carrier modulation may be applied to existing fiber channels, which may be of lower quality. Existing fiber channels may have characteristics which prevent or restrict the transmission of data using intensity modulation at certain frequencies. An adaptive multi-carrier modulation transmitter may characterize an existing fiber optic channel and ascertain the overall characteristics of the channel. The transmitter and receiver can then be configured to use various bandwidths and various modulations in order to match the transfer characteristic of the fiber channel. A series of adaptive multi-carrier modulation transmitters and receivers can be integrated on a single integrated circuit. If multiple adaptive receivers and transmitters are integrated on a single integrated circuit, they may be used to upgrade existing networks by adding different wavelength lasers for the transmission of data in order to achieve any capacity desired. Each receiver and transmitter may characterize the fiber for its particular wavelength laser and may configure the modulation and bandpass to the fiber's characteristics.
Abstract:
Techniques, apparatus and systems to provide adjustable bit rate optical transmission using programmable signal modulation in optical communication systems.
Abstract:
An optical transmission system which provides bandwidth restricted optical signal comprises an input terminal (10) for accepting an electrical binary signal, an amplifier (12) for amplifying said electrical binary signal to the level requested for operating an electrical-optical converter (16) such as a Mach Zehnder light modulator, a bandwidth restriction means (14) which is for instance a low pass filter for restricting bandwidth of said electrical binary signal, and an electrical-optical conversion means (16) such as a Mach Zehnder light modulator for converting electrical signal to optical signal. Because of the location of the low pass filter (14) between an output of the amplifier (12) and the Mach Zehnder light modulator (16), the amplifier (12) may operate in saturation region to provide high level output signal enough for operating the Mach Zehnder light modulator, and a signal shaped by the low pass filter (14) is applied to the Mach Zehnder light modulator (16) with excellent waveform. The invention is useful for long distance, large capacity and low cost optical transmission system.
Abstract:
A polarization duobinary optical transmitter is disclosed. The transmitter includes a precoder for coding an electric signal and a light source for generating continuous light. The transmitter also includes a chirped-free modulator for generating an NRZ signal including first and second polarization light beams orthogonal to each other by modulating the light with the electric signal and a band-pass filter for limiting neighbor frequency bands between the first and second polarization light beams.
Abstract:
A parallel precoder circuit executes a differential encoding operation on an n-row parallel input information series, and outputs an n-row parallel output information series, where 2≦n. Output sets of differential encoding operation circuits each of which having a largest column number from among differential encoding operation circuits disposed in first row to (n−1)th row become first-row to (n−1)th-row parallel outputs information series, and an output set of an nth-row delay circuit becomes nth-row parallel output information series.
Abstract:
An optical transmitter splits a linear polarization optical carrier into a TE wave and a TM wave. One of the TE wave and the TM wave is phase-modulated with a transmission data so as to generate a phase-modulated signal. The phase-modulated signal and the other one of the TE wave and the TM wave are coupled with a linear polarization and output into an optical transmission line. An optical receiver splits a light input from the optical transmission line into the TE wave and the TM wave. The TM wave or TE wave is converted into the TE wave or TM wave to interfere with the TE wave or TM wave. The interfered signal light is converted into an electric signal for restoration of the data.