Abstract:
A loudspeaker device is presented which includes a zeolite material comprising zeolite particles having a silicon to aluminum mass ratio of at least 200. For an increased pore fraction of pores with a diameter in a range between 0.7 micrometer and 30 micrometer shows an increased shift of the resonance frequency down to lower frequencies has been observed.
Abstract:
A audio speaker includes two parallel magnetically permeable plates and a diaphragm movably supported parallel to and approximately equidistant from the plates by a surround. A magnet assembly is coupled to the two magnetically permeable plates and passes through an opening in the diaphragm. The magnet assembly includes two magnets that are coupled with two like poles adjacent the diaphragm. A voice coil is coupled around the opening in the diaphragm to move the diaphragm when an electrical current flows in the voice coil. A suspension ring may surround a portion of the magnet assembly with a first end sealed to the diaphragm and an opposing second end sealed to one of the two plates to separate a back volume from a front volume. Some embodiments include several magnetic assemblies passing through the diaphragm with a voice coil and a suspension ring for each magnet assembly.
Abstract:
A pair of in-ear headphones is disclosed that are operable to reproduce incoming audio signals. The in-ear headphones include a housing defining an internal chamber. A front portion of the housing defines a nozzle extending away from the housing. A driver is positioned in the internal chamber such that a sound reproduction portion of the driver is aligned with an internal audio channel running through the nozzle. A damper is positioned in an end of the nozzle having a damper aperture having a predetermined size. The nozzle extends from a base portion of the housing at a predetermined upward angle and a predetermined bend angle that provides improved audio frequency responses in desirable frequency ranges.
Abstract:
A wearable electronic device includes a band, a gas inlet member, and a gas outlet member. The band defines a sound chamber. The gas inlet member and the gas outlet member are both positioned on the band and communicated with the sound chamber. When the gas inlet member is pressed, air enters into the sound chamber and the sound chamber expands to an expanded state. When the gas outlet member is pressed, the air is exhausted from the gas outlet member and the sound chamber restores to an original state.
Abstract:
A microphone 10 that comprises a transducer 12 and a closed cell foam body 18, 20 positioned between the transducer 12 and an opening 25 fashioned for receiving ambient sound. The microphone 10 is protected from external factors without exhibiting substantial sound transmission loss while using few parts. Good voice transmission, wind buffeting mitigation, and environmental protection can be achieved with a single material.
Abstract:
An acoustic generator according to an aspect of an embodiment includes an exciter, a vibrating body, and a damping member. The exciter receives input of an electric signal and vibrates. The exciter is attached to the vibrating body, and the vibrating body vibrates together with the exciter with vibration of the exciter. The damping member is attached so as to vibrate together with the vibrating body and the exciter and has a non-uniform thickness in a direction orthogonal to a vibration surface of the vibrating body.
Abstract:
An acoustic apparatus includes a substrate. A microelectromechanical system (MEMS) device is disposed on the substrate. The MEMS device forms a back volume between the MEMS device and the substrate. An integrated circuit disposed on the substrate. A cover is disposed on the substrate and the cover includes a port. The cover forms a cavity in which the MEMS device and the integrated circuit are disposed. The cover, substrate, MEMS device, and integrated circuit form a front volume. A filler material is disposed in the cavity to reduce an amount of the front volume that would exist in the absence of the filler material.
Abstract:
A self resonance-type sound-producing speaker that is waterproof and readily attachable. The self resonance-type sound-producing speaker includes an actuator speaker unit and a polymer foam arranged to cover the entire outer surface of this speaker unit and converts the vibrations from the speaker unit into plane waves to externally produce sound. The polymer foam preferably has the expansion ratio of 10 to 30 times and the closed pore structure. The thickness of the polymer foam is preferably not less than 2 mm and is more preferably not less than 3 mm.
Abstract:
A portable electronic device may have acoustic ports such as microphone and speaker ports. Acoustic devices such as microphones and speakers may be associated with the acoustic ports. An acoustic port may have an opening between an interior and exterior of the portable electronic device. The opening may be covered by a metal mesh. An acoustic fabric may be interposed between the metal mesh and the opening. The opening may be formed from a hole in a glass member having outer and inner chamfers. A microphone boot may be provided that forms front and rear radial seals with a housing of the device and a microphone unit respectively. The microphone boot may also form multiple face seals with the microphone unit. A speaker for the speaker port may be enclosed in a sealed speaker enclosure. The speaker enclosure may have a pressure-equalizing vent slit covered with an acoustic mesh.
Abstract:
A portable apparatus including a main body and a receiver is provided. The main body has a surface, an active sound hole and a passive sound hole. The active sound hole and the passive sound hole are both disposed at the surface of the main body. The receiver is disposed inside the main body and arranged for emitting a first sound wave and a second sound wave with the same amplitude and frequency but opposite transmission directions. The first sound wave is transmitted out of the main body via the active sound hole and the second sound wave is guided in the main body and transmitted out of the main body via the passive sound hole.