Abstract:
An on/off valve (O/OV) and directional valves (DV1, DV2) are packaged with a switching valve system (10) in a housing assembly (156, 157, 158, 160). The on/off valve (O/OV) is operated by a control handle (154) that is located at one end of the housing assembly (156, 157, 158, 160). The direction control valves (DV1, DV2) are operated by a handle (141) located at the opposite end of the housing assembly (156, 157, 158, 160). The control handles (154, 141) operate to position cams (152, 136, 138) which function to help position valve plugs. In a second embodiment, the handle (141) and cams (136, 138) for controlling the directional valves (DV1, DV2) are replaced by a solenoid valve system (SV2). A second solenoid valve (SV1) is added to the control system for the off/on valve (O/OV). The solenoid valve (SV1, SV2) allow for a remote positioning of the controls for the off/on and directional valves (O/OV, DV1, DV2). The handles and cams (141, 154, 136, 138, 152) provide for a compact positioning of the controls at one location requiring utilization of a single compact valve housing assembly (156, 157, 158, 160).
Abstract:
A meter-out flow control valve is provided that is compact and possesses a regenerative function. A poppet valve 70 for establishing and blocking fluid communication between a first actuator port 73-1 and a tank port 74 is urged by a spring 71 into a pressure contact with a seat 72. The poppet valve 70 is moved away from the seat 72 under pressure in a first pressure receiving chamber 80-1. A cylindrical valve 103 is fitted with the poppet valve 70 to provide a regenerative switching valve 101 that may establish and block fluid communication between the first actuator port 73-1 and a first regenerative port 100. A meter-out flow control valve having a poppet valve 70 and a cylindrical valve 103 fitted together is thus provided that is compact in form and yet capable of regenerating pressure fluid in a first actuator port 73-1 into a first regenerative port 100.
Abstract:
A unique switching valve for use with a multi-chamber adsorbent air and gas fractionation system for controlling the flow of fluid which comprises a valve housing including an inlet port, two outlet ports and an exhaust port and first valve and second valve members in the valve housing which are moveable between a first position and second position for alternately permitting and blocking fluid flow between the inlet port and the outlet ports and between the outlet ports and the exhaust port. The first and second valve members include mean for permitting a predetermined controlled flow of fluid between the inlet port and the outlet ports and means for permitting a predetermined controlled flow between the outlet ports and the exhaust port which simplify the design and control of the switching valve by eliminating the need for separate repressurization and depressurization valves. A multi-chamber adsorbent air and gas fractionation system utilizes the unique switching valve and comprises a pair of adsorption chambers adapted for air flow therethrough and periodic cycling between an adsorption cycle and a regeneration cycle where each chamber is alternately placed in communication with an inlet line which receives a pressurized air feed stream and an exhaust line maintained at a reduced pressure so that one chamber receives the pressurized air feed stream and is in the adsorption or drying cycle while the other chamber is simultaneously connected to the exhaust line and is in the reduced-pressure desorption or regeneration cycle.
Abstract:
A module for controlling pressure in a hydraulic circuit, comprising at least one generator of pressurized fluid, at least one reservoir of low pressure fluid, and at least one pressure receiver. The module including a solenoid valve having an electric coil and a movable magnetic core plunger. The plunger being moved to controlling a position of a distributor slide valve which slides in a bore formed in a body. The bore communicating with a feed passage connected to the generator of pressurized fluid, a distribution passage connected to the pressure receiver, and a pressure relief passage connected to said reservoir of low pressure fluid. The module having a pressure controlled valve located between the generator and the feed passage. The pressure controlled valve being switched into an opened position when the core plunger actuates the distributor slide valve such that pressurized fluid is directly communicated to the feed passage from the generator for communication to distribution passage for transmission to the pressure receiver.
Abstract:
Shown is a direction control valve (16) for use in a hydraulic control system having a source of hydraulic pressure (P) and a return passageway (50). The control valve includes a first hydraulic flow pathway (140, 142) and a second hydraulic flow pathway (144, 146). A two-position valve (38) includes four ports (48, 58, 64, 74). First and second pilot-operated poppets (88, 90) each have a pilot chamber (84, 86). When the valve (38) is in its first position, the source of hydraulic pressure (P) is provided to the pilot chamber (86) of the first poppet (88) and the pilot chamber (84) of the second poppet (90) is connected to the return pathway (50). As a result, one hydraulic flow pathway (140, 142) is open and the other hydraulic flow pathway (144, 146) is closed.
Abstract:
The disclosure is directed to a valve arrangement for controlling a linear or rotary hydraulic motor. The valve is connected to a pump which acts as a pressure medium source by the valve means and to a tank. The tank connection may be either direct or indirect. The arrangement of the present invention includes at least one seat valve located in a main flow connection between the pump and a port of the motor. Each of the seat valves would adjust the flow in the main flow connection to the motor via a pilot flow adjustable by a pilot valve. The pilot flow originates from the main flow through the seat valve.
Abstract:
A valve construction comprising a molded body including a plurality of body sections each having a generally flat inner surface. The flat surfaces of the body sections are disposed in contiguous relation along an interface. Each surface has a plurality of recesses that mate with complementary recesses in the surface of the other body section to form compartments in the assembled body, and operating components, such as valves, are located in the compartments. The movable elements of the operating components move in a direction parallel to the plane of the interface. Each surface also has a plurality of channel portions mating with complementary channel portions in the other surface to form channels that interconnect the compartments. Each surface also includes a plurality of port sections which mate with port sections in the other surface to form ports which establish communication between the channels and the exterior of the body.
Abstract:
A control change system for a hydraulic working vehicle having a plurality of hydraulic actuators operable by control levers each shiftable to a plurality of control positions. This system includes a plurality of pilot-operated control valves for controlling pressure oil supply to the hydraulic actuators, respectively, pilot pressure generating valves for generating a pilot pressure in accordance with the control positions of the control levers, and a pilot pressure switching unit for receiving the pilot pressure from the pilot pressure generating valves and outputting the pilot pressure selectively to the control valves. The pilot pressure switching unit includes a plurality of spools slidable to change communicating passages between a pilot pressure input section and a pilot pressure output section of the switching unit.
Abstract:
A multiplexed hydraulic control system having a plurality of hydraulic channels for individually controlling the positions of a plurality of actuators in the respective channels in accordance with a corresponding plurality of electrical control signals. The system includes a relatively small multiplexing valve or valve array which has a common input and a plurality of individually selected outputs. The multiplexing valve has a control input which is responsive to a source of binary selector signals, such selector signals being used to directly address any particular channel connected to the multiplexer. The system also includes means for modulating a hydraulic signal in accordance with selected ones of the plurality of electrical control signals, and applying the modulated hydraulic signal to the multiplexer common input. Control means then coordinates the addressing of the multiplexer with the modulating of the hydraulic signal to assure that hydraulic signals of the appropriate magnitude are coupled to each addressed channel, thereby to control all of the channels in accordance with the control signals for each channel.
Abstract:
The hydraulic control is constructed for time-sharing of the pump which normally controls the turning mechanism, to operate other hydraulic equipment in conjunction with other pumps.