Abstract:
A shaft member for hydrodynamic bearing apparatuses which can restore the pressure balance in a thrust bearing gap formed on both axial sides of the flange portion in an early stage is provided at low costs.A shaft material 10 integrally having a shaft portion 11 and a flange portion 12 is formed as a through-hole 19 opening to its both end faces 12a, 12b on the flange portion 12 of the shaft material 10 is formed in a common forging step. As a result, the through-hole 29 is formed to open to the inner diameter side of these bearing gap W1, W2 avoiding thrust bearing gaps W1, W2 formed on both end faces of the flange portion 22 of the shaft member 2 as a finished product.
Abstract:
A method of distributing fuel in a fuel nozzle comprises: providing at least two helical channels in the fuel nozzle, each having a channel exit port, providing a fuel inlet cavity in fluid communication with the helical channels, and flowing fuel in the fuel inlet cavity, the helical channels and the channel exit ports.
Abstract:
A method for fabricating a dome assembly for a gas turbine engine combustor includes forming an annular dome plate including a plurality of substantially circular eyelets circumferentially spaced thereon, coupling a seal plate to the dome plate at each eyelet such that an opening defined in each seal plate is aligned substantially concentrically with respect to a respective eyelet, coupling a baffle to each seal plate such that an opening defined in each baffle is aligned substantially concentrically with respect to a respective eyelet, and coupling a swirler assembly having an integrally formed swirler and flare cone to each seal plate such that the flare cone extends at least partially through the baffle opening, and such that cooling air may be directed towards the flare cone through openings formed in the assembly.
Abstract:
A method for fabricating a dome assembly for a gas turbine engine combustor includes forming an annular dome plate including a plurality of substantially circular eyelets circumferentially spaced thereon, coupling a seal plate to the dome plate at each eyelet such that an opening defined in each seal plate is aligned substantially concentrically with respect to a respective eyelet, coupling a baffle to each seal plate such that an opening defined in each baffle is aligned substantially concentrically with respect to a respective eyelet, and coupling a swirler assembly having an integrally formed swirler and flare cone to each seal plate such that the flare cone extends at least partially through the baffle opening, and such that cooling air may be directed towards the flare cone through openings formed in the assembly.
Abstract:
Aspects of the invention relate to a fixture and a method to assist in the alignment of the inlet end of a transition duct and a combustor component in a turbine engine. The fixture includes a plurality of pressure transducers spaced on a mandrel so as to correspond to the target alignment location of the transition. The plurality of pressure transducers produce signals, which can be converted by a signal processor into an actual alignment location signal. A display can be provided for presenting graphical images of the target alignment location and the actual alignment location responsive to the actual alignment location signal received from the signal processor. Thus, a user can view the movement of the graphical image of the actual alignment location relative to the graphical image of the target alignment location such that the user can adjust the transition's position until the graphical images are substantially aligned.
Abstract:
A combustor for oxidizing a combustion fuel and pre-heating one or more reactants for fuel reforming. The combustor includes an elongated housing having an inlet for receiving a combustion fuel and an outlet for exhausting combustion products. The elongated housing further includes a cylindrical side wall, a bottom wall, and a top wall. Inert particles are disposed within the housing adjacent the inlet. A combustion catalyst bed is disposed within the housing above the inert particles that is a mixture of inert particles and combustion catalyst. The inert particles and the combustion catalyst preferably have a volumetric ratio of inert particles to catalyst between about 2:1 and about 4:1. The combustor has at least one heat exchanger within the combustion catalyst bed for heating a reformer reactant and generating steam. Preferably, the combustor includes at least two heat exchangers within the combustion catalyst bed, the heat exchanging elements have different surface areas. The combustor can include at least one sensor for measuring temperature within the combustor, and preferably the reactor includes two or more sensors for measuring temperature at two or more locations within the combustion catalyst bed. A power-generating apparatus comprising the combustor, a fuel processor and fuel cell is also provided. Methods for pre-heating a reactant and generating steam for use in a fuel reformer and for manufacturing a combustor for use in fuel reforming are provided.
Abstract:
For manufacturing a gas generator (1), a tubular body (10) having an opening (14) in a circumferential wall (12) and a housing part (16) having an attachment end (26) are provided. The geometry of a proximate rim (20) of the opening (14) and that of the attachment end (26) are coordinated such that a first contact region encircling the opening (14) and a second contact region on the attachment end (26), which is circumferentially closed, are formed. The housing part (16) is placed onto the tubular body (10) such that the first contact region is in contact with the second contact region. Then the body (10) and the housing part (16) are joined to each other by capacitor discharge welding.
Abstract:
A combustor for oxidizing a combustion fuel and pre-heating one or more reactants for fuel reforming. The combustor includes an elongated housing having an inlet for receiving a combustion fuel and an outlet for exhausting combustion products. The elongated housing further includes a cylindrical side wall, a bottom wall, and a top wall. Inert particles are disposed within the housing adjacent the inlet. A combustion catalyst bed is disposed within the housing above the inert particles that is a mixture of inert particles and combustion catalyst. The inert particles and the combustion catalyst preferably have a volumetric ratio of inert particles to catalyst between about 2:1 and about 4:1. The combustor has at least one heat exchanger within the combustion catalyst bed for heating a reformer reactant and generating steam. Preferably, the combustor includes at least two heat exchangers within the combustion catalyst bed, the heat exchanging elements have different surface areas. The combustor can include at least one sensor for measuring temperature within the combustor, and preferably the reactor includes two or more sensors for measuring temperature at two or more locations within the combustion catalyst bed. A power-generating apparatus comprising the combustor, a fuel processor and fuel cell is also provided. Methods for pre-heating a reactant and generating steam for use in a fuel reformer and for manufacturing a combustor for use in fuel reforming are provided.
Abstract:
A fuel nozzle assembly for a gas turbine includes a plurality of circumferentially spaced vanes with holes for flowing fuel from plenums within the vanes through holes in the vane walls for premixing with air. To tune the nozzle assembly, the holes are resized by reforming the existing holes to a predetermined hole size, securing plugs into the holes, and forming holes through at least certain of the plugs to diameters less than the diameter of the existing holes.