Abstract:
Heat dissipation during the operation of integrated circuit chips is an old problem that continues to get worse. The present invention significantly ameliorates this by placing an embedded heat pipe directly beneath the chip. Using powder injection molding, the lower portion of the package is formed first as an initial green part which includes one or more cavities. The latter are then lined with a feedstock that is designed to produce a porous material after sintering, at which time a working fluid is introduced into the porous cavities and sealed, thereby forming one or more heat pipes located directly below the chip. The latter is then sealed inside an enclosure. During operation, heat generated by the chip is efficiently transferred to points outside the enclosure. A process for manufacturing the structure is also described.
Abstract:
A method for applying diffusion aluminide coating on a selective area of a turbine engine component and the coating produced by that method is disclosed. A quartz infrared lamp heats only substantially the localized area of the component to be coated, rather than the complete part. Either halide activated or non-activated tape is applied on the area to be coated and is held in place during coating using a high temperature dimensionally stable tape holder manufactured from graphite or ceramic. The quartz infrared lamp is used to heat only the desired area to a coating temperature of about 1800null F. to about 2000null F. under an inert atmosphere for about 3 to about 8 hours to achieve the desired aluminide coating thickness. No powder masking of the machined surface area is required. Due to the localized heating, aluminum vapor generated from the tape will only deposit aluminide coating on the taped area.
Abstract:
A method for repairing defects in a gas turbine component that comprises a substrate and an existing coating on the substrate. The article includes cooling holes having a predetermined air flow requirement and an outer shaped portion and an inner metering portion. The method comprises removing the existing coating and recoating the surface of the article with a nonoriginal coating. After the nonoriginal coating is applied onto the component, the cooling holes that meet a predetermined inspection criteria are reworked to remove the excess nonoriginal coating deposited in the outer shaped portion of the cooling holes. The reworking is done by receiving an electrode, having only a shaped portion with a preselected shape, in the outer shaped portion of the cooling holes thus restoring the cooling holes to the predetermined air flow requirement.
Abstract:
An assembly including at least one heat conductive member each constituted by an aluminum-based die-casting, and a heat pipe attached at a fixing portion thereof to the heat conductive member. The assembly is characterized in that the aluminum-based die-casting is formed of a castable aluminum alloy which includes up to 0.5% by weight of silicon; that the heat conductive member has a groove formed in a surface thereof; and that the heat pipe is accommodated at the fixing portion in the groove, and is held fixed at the fixing portion in the groove by plastically deforming at least one of opposite side walls defining the groove, toward an outer circumferential surface of the heat pipe.
Abstract:
A side outer panel that is a body panel is separated into a body front side section (10), a body rear side section (11) and a side sill section (12). These separated repair parts are produced using local molds produced to correspond to each part. The local molds are produced only when the mold cost is lower than the lost material cost in the case where the divided repair parts are produced by directly cutting from the body panel.
Abstract:
A replacement method facilitates replacing of a portion of a nuggeted combustor liner within a gas turbine engine combustor in a cost-effective and reliable manner. The combustor includes a combustion zone that is defined by an inner and an outer liner. The inner and outer liners each include a series of panels and a plurality of nuggets formed by adjacent panels. The method includes the steps of cutting between an outer surface and an inner surface of at least one liner panel through at least one nugget, removing at least one panel that is adjacent the area of the liner that was cut, and installing a replacement panel into the combustor for each panel that was removed from the combustor.
Abstract:
A method for easily removing portions of aircraft skin damaged by pressure cycles and corrosion. The method includes inspecting both upper and lower portions of the skin. Using a special router and guide, the damaged skin is then removed and replaced. The method is particularly useful in that it is rapid and precise, and promises control over the process sufficient to insure that aircraft structure below the skins is not damaged. The method may also be used to remove and replace sheet metal used in other applications.
Abstract:
A blade tip cap of a turbine blade is repaired by restoring the tip rail and attaching a strengthening rib across the blade tip cap connecting the concave wall to the convex wall of the tip rail.
Abstract:
When bodies such as connecting rods, bearings, ring-shaped housings or similar are separated by breaking, material particles are torn out of the broken surface. These particles initially continue to adhere to the broken surface at first, before becoming detached from the broken surface and falling out when a force is exerted subsequently. According to the invention, the bodies are subjected to a vibration treatment after they have been separated by breaking in order to prevent detachable adhering particles of the material from falling out in an uncontrolled manner.
Abstract:
A method to repair a permanently sealed air data tube by identifying at least one area of a strut component of said air data tube wherein said strut component may be broached to provide access to internal components accommodated generally within the interior portion of said tube; broaching said strut component and a probe component in areas generally consistent with those portions identified as providing manipulative access to internally accommodated components; removing said internally accommodated components; refurbishing the internal surface areas of the vacated air data tube; inspecting exterior surfaces and said internally accommodated components; determining air data tube components requiring replacement wherein said determination is made by choosing from a group of some or all of the used air data tube components including, but not limited to, a strut component, one or more heating element component(s), a probe component, one or more static line component(s), one or more static line fitting component(s), one or more hermetic seal(s), one or more pitot pressure line fitting connector(s) and a pitot pressure line, an electrical connector; re-assembling said air data tube with said determined replacement components; re-sealing broached air data tube components; and restoring the external surface of said re-sealed air data tube to an airworthy condition.