Abstract:
A heat pipe with superior heat transfer between the heat pipe and the heat source and heat sink is provided. The heat pipe is held tightly against the heat source by mounting holes which penetrate the structure of the heat pipe but are sealed off from the vapor chamber because they each are located within a sealed structure such as a pillar or the solid layers of the casing surrounding the vapor chamber. Another feature of the heat pipe is the use of a plurality of particles joined together by a brazing compound such that fillets of the brazing compound are formed between adjacent ones of the plurality of particles so as to form a network of capillary passageways between the particles of the wick.
Abstract:
A heat pump and hydrogen compression apparatus includes a heat exchange chamber through which a heating medium source circulates, a pair of hydrogen chambers formed on both sides of the heat exchange chamber, and hydrogen storage alloy pipe groups, one end portion of which imports into the pair of hydrogen chambers, and whose other end portion extends in a free state into the heat exchange chamber, and that form a pair whose one end portions that are on the side of the pair of hydrogen chambers are each fixed on that side, wherein the hydrogen storage alloy pipe groups have hydrogen storage alloy pipes provided a hydrogen storage alloy inside, the free end portion on the heat exchange chamber side of the hydrogen storage alloy pipe is closed off, and hydrogen circulation holes are opened in the end portions on the hydrogen chamber sides of the hydrogen storage alloy pipe.
Abstract:
The present invention provides a heat transfer augmentation method and device for use on a printed circuit board. The inventive device comprises one or more elements having high impedance that are attached to traces on a printed circuit board, thus permitting heat transfer without allowing the device to affect the electrical circuit on the board. The elements can be surface mount resistors that conduct heat more efficiently than does the printed circuit board insulator material, such as resistors having alumina or aluminum nitride substrates. The inventive device and method is thus compatible with standard printed circuit board assembly procedures, is inexpensive, and has a smaller foot print on the circuit board than prior art heat transfer augmentation devices.
Abstract:
A heat dissipation device includes a plurality of fin plates (1) and a pair of heat pipes (30). Each fin plate includes a first plate (10) and a second plate (20). The first plate forms a first fastener (15) at an edge thereof and a pair of cutouts (17) at opposite sides of the fastener. A pair of tabs (152) is formed at opposite sides of the first fastener and parallel to the first plate. The second plate forms a second fastener (25) at an edge thereof. The second fastener includes a pair of double-layer latches (252) received in the cutouts of the first plate and interengaged with the tabs of the first plate. The first fastener is located between the pair of latches. The heat pipes are inserted through the first and second plates between said edges. The first and second plates then abut each other at said edges.
Abstract:
Disclosed herein is an electronic apparatus that comprises a housing, and a circulating path. A heat-generating component is contained in the housing. Liquid coolant for cooling the heat-generating component flows through the circulating path. The circulating path has a first connecting end and a second connecting end connected to the first connecting end. The junction between the first connecting end and the second connecting end is covered with a coolant-absorbent member.
Abstract:
A heat pipe is provided, which includes at least one outer structural wall, a wicking structure, and an inner retaining wall for the wicking structure. The outer structural wall has condenser, intermediate, and evaporator sections sequentially after one another. The wicking structure includes a plurality of wicking components onto which a fluid condenses at the condenser section when heat transfers therefrom out through the condenser section, flows thereon through the intermediate section, and evaporates therefrom when heat transfers thereto through the evaporator section. The wicking components are held in place between the intermediate section and an outer surface of the inner retaining wall. The fluid evaporating from the evaporator section recirculates past an inner surface of the inner retaining wall to the condenser section.
Abstract:
The present invention is a plate heat exchanger for heat transfer between two fluids, having several thin heat transfer plates (1) abutting towards each other and between the heat transfer plates (1) arranged sealing members (6), which in alternate plate interspaces delimit a flow space for a first fluid and in the remaining plate interspaces delimit flow spaces for a second fluid, each heat transfer plate (1) having a pressed corrugation pattern, which has two distribution portions (7, 8) and, arranged between these, a main heat transfer portion (9), which is divided in several areas (10a, 10b) with parallel ridges and valleys, and the plate heat exchanger having inlets and outlets for the fluids, arranged such that the fluids will have a flow direction between the heat transfer plates (1) essentially from one to the other of the distribution portions (7,8) at each heat transfer plate. According to the invention the heat transfer portion (9) of each heat transfer plate (1) has a row with at least three areas (10a, 10b) located after each other in the flow direction and an even number of such rows are arranged next to each other across the flow direction, by which the parallel ridges and valleys of each pair of adjacent areas (10a, 10b) extend in such a way that they form mirror images of each other with reference to an imaginary line between respective areas (10a, 10b).
Abstract:
A heat transfer fluid medium (25) within the closed system is arranged to boil to form a vapor in the evaporation section (12) and such that release of heat from the condensation section (11) to the fluid to be heated (4A) causes the vapor to condense to liquid in the condensation section (11). The conduit forms a loop (10) and back flow in the loop (10) is prevented by providing a trap (27) of liquid in the conduit at a position adjacent to or at the evaporation section (12). The flow around the loop (10) at high speed sufficient to carry all condensate forwardly is caused solely by application of energy to the system by the heat source (21) without mechanical pumping. Inert gases are collected immediately upstream of the trap (27) and can be purged therefrom.
Abstract:
A battery cooling apparatus for positively cooling an in-vehicle battery is disclosed. Air that has passed through a cooler (5) is supplied to batteries (1), and only internal air, but not external air, passes through the cooler (5). In this way, the batteries (1) can be cooled without being greatly affected by the disturbances such as the heat of an exhaust pipe and sunlight. Thus, the batteries (1) can be sufficiently cooled without increasing the heat radiation area, i.e. the surface area of the batteries (1). Noise of cooling air flow can be reduced while at the same time suppressing increases in both size and production cost of the battery.
Abstract:
Tubes 3 are provided substantially upright on an upper surface of a refrigerant container 2 by inserting lower end portions thereof into inserting holes 5 of the refrigerant container 2. The tube 3A, differed from the tubes 3B, has a trumpet shape which is suddenly increased in its passage cross section towards the lower end opening portion. Thus, most of refrigerant vapor boiled and evaporated in the refrigerant container 2 can be collectively introduced into the tube 3A located within the boiling area. The refrigerant vapor entered a header tank 4from the tube 3A is diffused in the header tank 4, and is introduced into the tubes 3B located out of the boiling area. The condensate produced by cooling the refrigerant vapor upon passing through the tubes 3B can be circulated into the refrigerant container 2.