Abstract:
A hard disk drive that includes a voice coil motor and a micro-actuator. The micro-actuator is controlled by a servo that utilizes a micro-actuator controller and a corresponding micro-actuator transfer function. The servo enters a mode to self-determine at least one transfer function coefficient of the micro-actuator controller.
Abstract:
A hard disk drive that includes a voice coil motor and a micro-actuator. The micro-actuator is controlled by a servo that utilizes a micro-actuator calibration parameter. To compensate for temperature changes within the disk drive the micro-actuator calibration parameter is periodically updated.
Abstract:
A method for selecting an antenna in an orthogonalized spatial multiplexing system. Upon receipt of at least one symbol from a transmitter via multiple receive antennas, a receiver decodes each of the received symbols; determines a rotation angle between the received symbols, and selects an optimal subset of transmit antennas using a distance between vectors of the decoded symbols; generates feedback information including the determined rotation angle and the selected optimal subset, and transmits the generated feedback information to the transmitter. Upon receipt of the feedback information, the transmitter beam-forms an antenna corresponding to the optimal subset depending on the received feedback information, and transmits a data symbol to the receiver. The receiver detects each of data symbols received from the transmitter.
Abstract:
A film (e.g., silicon polymer film, photoresist film) may be removed by applying a composition including a quaternary ammonium hydroxide, a sulfoxide compound, a dialkylene glycol alkyl ether, and/or water to the film. A silicon polymer film (e.g., hard mask layer) and a photoresist film, for example, may be removed by the composition using an in-situ process. Additionally, the composition may remove the silicon polymer film and the photoresist film while preventing or reducing damage to an underlying layer and the generation of particle-type etch residue.
Abstract:
There is provided a bracket for securing a side airbag for an automotive vehicle. The bracket fixes a path such that a connection strap connecting the side airbag to the bracket is secured to an A-pillar and removes any interference when the side airbag is assembled, to make it easy to assemble the side airbag in a manufacturing site. The bracket has a through aperture through which a bolt is fastened, and a mounting plate secures the side airbag to the vehicle. Protrusions are each formed on each of both side ends of the bracket, and a bracket clip is installed on the external surface of the bracket. The bracket clip comprises: a bending part formed in the middle of the bracket clip; a plurality of support plates formed at either side of the bending part; and through apertures formed on the support plates, corresponding to the through aperture of the bracket. In the present invention, the path of the connection strap connecting the side airbag to the bracket is fixed by the bracket, and there is no interference when the bracket is assembled to install the side airbag in the A-pillar. Therefore, the assembling efficiency is improved, time is save, and productivity is improved in the manufacturing site.
Abstract:
An apparatus is provided for efficiently allocating a transmission period in a wireless network system. An access point (AP) transmits a PSMP frame indicating a downlink period provided to each station (STA) and a minimum amount of an uplink period allocated to each STA, and at least one sub PSMP frame indicating an uplink period additionally provided for an STA that transmitted a resource request message for remaining queued data in the uplink period indicated by the PSMP frame. If the uplink period indicated by the PSMP frame is insufficient to transmit the queued data, the STA transmits a data unit including a part of the queued data and a resource request message for the remaining queued data in the uplink period. After transmitting the resource request message, the STA receives the sub PSMP frame after the full period indicated by the sub PSMP frame, and transmits the remaining queued data to the AP in the uplink period indicted by the sub PSMP frame.
Abstract:
An apparatus is provided for allocating a transmission period in a wireless network system. An access point (AP) transmits a PSMP frame indicating a downlink period and an uplink period allocated to each station (STA), and at least one sub PSMP frame indicating an allocated downlink period for at least one of a retransmission of downlink data and a transmission of an ACK indicating successful receipt of uplink data. After exchanging data with the AP in the downlink and uplink periods indicated by the PSMP frame, an STA receives the each sub PSMP frame, and performs at least one of a reception of the retransmitted downlink data and a reception of the ACK in the downlink period indicated by the each sub MAP frame.
Abstract:
A system is provided for efficiently allocating a transmission period in a wireless network system. An access point (AP) transmits a PSMP frame indicating a downlink period provided to each station (STA) and a minimum amount of an uplink period allocated to each STA, and at least one sub PSMP frame indicating an uplink period additionally provided for an STA that transmitted a resource request message for remaining queued data in the uplink period indicated by the PSMP frame. If the uplink period indicated by the PSMP frame is insufficient to transmit the queued data, the STA transmits a data unit including a part of the queued data and a resource request message for the remaining queued data in the uplink period. After transmitting the resource request message, the STA receives the sub PSMP frame after the full period indicated by the sub PSMP frame, and transmits the remaining queued data to the AP in the uplink period indicted by the sub PSMP frame.
Abstract:
A method is provided for efficiently allocating a transmission period in a WLAN system. An access point (AP) transmits a PSMP message providing a downlink period and an uplink period provided to each station (STA), and at least one sub PSMP frame indicating a period of at least one of a downlink and an uplink for an STA requiring additional resource allocation. After exchanging data with the AP in the downlink and uplink periods provided by the PSMP frame, if there is a need for additional resource allocation, the STA receives the at least one sub PSMP frame and exchanges data with the AP in the period provided by the each sub PSMP frame.
Abstract:
A method for detecting and decoding a signal in a communication system based on Multiple-Input Multiple-Output (MIMO)-Orthogonal Frequency Division Multiplexing (OFDM). A signal is received through multiple receive antennas. A decision error occurring at a symbol decision time is considered and a symbol is detected from transmitted symbols. Original data transmitted from the detected symbol is recovered. The performance of a coded bit system can be significantly improved using a new equalization matrix G considering a decision error.